Exercises 67

® Supervisory control.
e Human—computer interfacing.

These activities are to be found in one form or another in all embedded computer
applications and so although in this chapter we have concentrated on process control
applications the ideas (and problems) are common to a wide range of other
applications.

Also covered were the ways in which several computers can be configured for
control applications. These include dual computer systems to increase reliability,
and distributed and hierarchical configurations. A brief mention was made of some
advanced control strategies.

EXERCISES
2.1 List the characteristics of (a) batch processes and (b) continuous processes.

2.2 You are the manager of a plant which can produce ten different chemical products
in batches which can be between 500 and 5000 kg. What factors would you expect to
consider in calculating the optimum batch size? What arguments would you put
forward to justify the use of an on-line computer to calculate optimum batch size?

23 What are the advantages/disadvantages of using a continuous oven? How will the
control of the process change from using a 'standard oven on a batch basis to using
an oven in which the batch passes through on a conveyor belt? Which will be the
easier to control?

2.4 List the advantages and disadvantages of using DDC.

2.5 List the advantages of using several small computers instead of one large computer
in control applications. Are there any disadvantages that arise from using several
computers?

2.6 In the section on human—computer interfacing we made the statement ‘the design of
user interfaces is a specialist area’. Can you think of reasons to support this statement
and suggest what sort of background and training a specialist in user interfaces might
require?
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Computer Hardware Requirements for
Real-time Applications

This chapter provides a brief overview of some of the basic ideas relating to
computer hardware. A brief description of the various types of computers such as
microprocessors, microcomputers and special purpose computers is given. A
detailed explanation of the standard methods for data transfer including
consideration of the use of interrupts is provided. Also given is a brief overview on
communication methodolfogies. The emphasis throughout is on the principles
involved and not on the characteristics of a particular microprocessor or
microprocessor support chips.
The aims of the chapter are to provide:

® A basic description of the major features of microprocessors.
® A description of the standard interfacing techniques.
® An overview of the standard communication methodologies.

3.1 INTRODUCTION

Although almost any digital computer can be used for real-time computer control
and other real-time operations, they are not all equally easily adapted for such work.
In the majority of embedded computer-based systems the computer used will be a
microprocessor, a microcomputer or a specialised digital processor.: Specialised
digital processors include fast digital signal processors, parallel computers such as
the transputer, and special RISC (Reduced Instruction Set Computers) for use in
safety-critical applications (for example, the VIPER (Cullyer and Pygott, 1987)).

3.2 GENERAL PURPOSE COMPUTER

The general purpose microprocessors include the Intel XX86 series, Motorola
6BOXX series, National 32XXX series and the Zilog Z80 and Z8000 series.
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General Purpose Computer 69

A characteristic of computers used in control systems is that they are modular:
they provide the means of adding extra units, in particular specialised input and
output devices, to a basic unit. The capabilities of the basic unit in terms of its
processing power, storage capacity, input/output bandwidth and interrupt structure
determine the overall performance of the system. A simplified block diagram of the
basic unit is shown in Figure 3.1; the arithmetic and logic, control, register, memory
and input/output units represent a general purpose digital computer.

Of equal importance in a control computer are the input/output channels which
provide a means of connecting process instrumentation to the computer, and also
the displays and input devices provided for the operator. The instruments are not
usually connected directly but by means of interface units. Also of importance is the
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Figure 3.1 Schematic diagram of a general purpose digital computer. -
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ability to communicate with other computers since, as we discussed in the previous
chapter, many modern computer control systems involve the use of several
interconnected computers.

3.2.1 Central Processing Unit

The arithmeltic and logic unit (ALU) together with the control unit and the general
purpose registers make up the central processing unit (CPU). The ALU contains the
circuits necessary to carry out arithmetic and logic operations, for example to add
numbers, subtract numbers and compare two numnbers. Associated with it may be
hardware units to provide multiplication and division of fixed point numbers and,
in the more powerful computers, a floating point arithmetic unit. The general -
purpose registers can be used for storing data temporarily while it is being processed.
Early computers had a very limited number of general purpose registers and hence
frequent access to main memory was required. Most computers now have CPUs
with several general purpose registers — some large systems have as many as 256
registers - and for many computations, intermediate results can be held in the CPU
without the need to access main memory thus giving faster processing.

The control unit continually supervises the operations within the CPU: it fetches
program instructions from main memory, decodes the instructions and sets up the
necessary data paths and timing cycles for the execution of the instructions.

The features of the CPU which determine the processing power available and
hence influence the choice of computer for process control include:

e wordlength;

instruction set;

addressing methods;

number of registers;
information transfer rates; and
interrupt structure.

The computer wordlength is important both in ensuring adequate preéision in
calculations and in allowing direct access to a large area of main storage within one
instruction word. It is possible to compensate for short wordlengths, both for
arithmetic precision and for memory access, by using multiple word operations, but
the penalty is increased time for the operations.

. The basic instruction set of the CPU is also important in determining its overall
performance. Features which are desirable are:

e flexible addressing modes for direct and immediate addressing;

e relative addressing modes;

e address modification by use of index registers:

® instructions to transfer variable length blocks of data between storage units
or locations within memory; and

#® single commands to carry out multiple operations.
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These features reduce the number of instructions required to perform
‘housekeeping’ operations and hence both reduce storage requirements and improve
overall speed of operation by reducing the number of accesses to main memory
required to carry out the operations. A consequence of an extensive and powerful
instruction set is, however, that efficient programming in the assembly language
becomes more difficult because the language can become complex; thus it is
desirable to be able to program the system using a high-tevel language which has a
compiler designed to make optimum use of the special features of the instruction
set. There are many other reasons for nof using assembly languages and we will
discuss some of them in Chapter 5.

Another area which must be considered carefully when selecting a computer for
process control is information transfer, both within the CPU and between the
backing store and the CPU, and also with the inputfoutput devices. The rate at
which such transfers can take place, the ability to carry out operations in parallel
with the processing of data, and the ability to communicate with a large range of
devices can be crucial to the application to process control. A vital requirement is
also a flexible and efficient multi-level interrupt structure.

3.2.2 Storage

The storage used on computer control systems divides into two main categories: fast
access storage and auxiliary storage. The fast access memory is that part of the
system which contains data, programs and results which are currently being
operated on. The major restriction with current computers is commonly the
addressing limit of the processor. In addition to RAM (random access memory —
read/write} it is now common to have ROM (read-only memory), PROM
(programmable read-only memory) or EPROM (electronically programmable read-
only memory) for the storage of critical code or predefined functions.

The use of ROM has eased the problem of memory protection to prevent loss
of programs through power failure or corruption by the malfunctioning of the
software (this can be a particular problem during testing). An aiternative to using
ROM is the use of memory mapping techniques that trap instructions which attempt
to store in a protected area. This technigue is usually only used on the larger systems
which use a memory management system to map program addresses onto the
physical address space. An extension of the system allows particular parts of the
physical memory to be set as read only, or even locked out altogether: write access
can be gained only by the use of ‘privileged’ instructions.

The auxiliary storage medium is typically disk or magnetic tape. These devnces
provide bulk storage for programs or data which are required infrequently at a much
lower cost than fast access memory. The penalty is a much longer access time and
the need for interface boards and software to connect them to the CPU. Auxiliary
or backing store devices operate asynchronously to the CPU and care has to be
taken in deciding on the appropriate transfer technique for data between the CPU,

£
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fast access memory and the backing store. In a real-time system use of the CPU to
carry out the transfer is not desirable as it is slow and no other computation can
take place during transfer. For efficiency of transfer it is sensible to transfer large
blocks of data rather than a single word or byte and this can result in the CPU not
being available for up to several seconds in some cases.

The approach frequently used is direct memory access (DMA). For this the
interface controlier for the backing memory must be able.to take control of the
address and data buses of the computer.

3.2.3 Input and Output

The inputfoutput (IfO) interface is one of the most complex areas of a computer
system; part of the complication arises because of the wide variety of devices which
have to be connected and the wide variation in the rates of data transfer. A printer
may operate at 300 baud whereas a disk may require a rate of 500 kbaud. The
devices may require parallel or serial data transfers, analog-to-digital or digital-to-
analog conversion, or conversion to pulse rates.

The IO system of most control computers can be divided into three sections:

® process i/O;
@ operator 1/O; and
® computer 1/O.

3.2.4 Bus Structure

Buses are characterised in three ways:

& mechanical (physical) structure;
& clectrical; and
¢ functional.

In mechanical or physical terms a bus is a collection of conductors which carry
electrical signals, for example tracks on a printed circuit board or the wires in a
ribbon cable. The physical form of the bus represents the mechanical characteristic
of the bus system. The electrical characteristics of the bus are the signal levels,
loading (that is, how many loads the line can support), and type of output gates
(open-collector, tri-state). The functional characteristics describe the type of
information which the electrical signals flowing along the bus conductors represent.
The bus lines can be divided into three functional groups:

@ address lines;
@ data lines; and
® control and status lines.
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These can be thought of as where, what and when. The address lines provide
information on where the information is to be sent {or where it is to be obtained
from); the data lines show what the information is; and the control and status lines
indicate when it is to be sent.

3.3 SINGLE-CHIP MICROCOMPUTERS AND MICROCONTROLLERS

Many integrated circuit manufacturers produce microcomputers in which all the
components necessary for a complete computer are provided on one single chip. A
typical single-chip device is shown in Figure 3.2. With only a small amount of
EPROM and an even smaller amount of RAM this type of device is obviously
intended for small, simple systems. The memory can always be extended by using
external memory chips. _

The microcontroller is similarly a single-chip device that is specifically intended
for embedded computer control applications. The main difference between it
and a microcomputer is that it typically will have on board the chip a multi-
plexed ADC and some form of process output, for example a pulse width
modulator unit. The chip may also contain a real-time clock generator and a
watch-dog timer.
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Figure 3.2 A typical single-chip computer.
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3.4 SPECIALISED PROCESSORS

Specialised processors have been developed for two main purposes:

& safety-critical applications; and
® increased computation speed.

For safety-critical applications the approach has been to simplify the instruction set
— the so-called reduced instruction set computer (RISC). The advantage of
simplifying the instruction set is the possibility of formal verification {using
mathematical proofs) that the logic of the processor is correct. The second
advantage of the RISC machine is that it is easier to write assemblers and compilers
for the simple instruction set. An example of such a machine is the VIPER {Cullyer,
1988; Dettmer, 1986), the main features of which are:

® Formal mathematical description of the processor logic.

® Integer arithmetic (32 bit) and no floating point operations (it is argued that
floating point operations are inexact and cannot be formally verified).

® No interrupts — all event handling is done using polling (again interrupts
make formal verification impossible).

e No dynamic memory allocation.

(There is an unresolved dispute regarding the validity and completeness of the
formal verification procedures used for the VIPER processor (MacKenzie, 1993).)

The traditional Von Neumann computer architecture with its one CPU through
which ali the data and instructions have to pass sequentially results in a bottleneck.
Increasing the processor speed can increase the throughput but eventually systems
will reach a physical limit because of the fundamental limitation on the speed at
which an electronic signal can travel, The search for increased processing speed has
led to the abandonment of the Von Neumann architecture for high-speed
computing.

3.4.1 Parallel Computers

Many different forms of parallel computer architectures have been devised;
however, they can be summarised as belonging to one of three categories:

SIMD Single instruction stream, multiple data stream.
MISD  Multiple instruction stream, single data stream.
MIMD  Multiple instruction stream, multiple data stream.

These are illustrated in Figure 3.3 where the traditional architecture characterised
as SISD (Single instruction stream, single data stream) is also shown.

MIMD systems are obviously the most powerful class of parailel computers in
that each processor can potentially be executing a different program on a different
data set. The most widely available MIMD system is the INMOS transputer. Each
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transputer chip has a CPU, on-board memory, an external memory interface and
communication links for direct point-to-point connection to other transputer chips.
An individual chip can be used as a stand-alone computing device; however, the
power of the transputer is obtained when several transputers are interconnected to
form a parallel processing network.

INMOS developed a special programming language, occam, for use with the
transputer. Occam is based on the assumption that the application to be
implemented on the transputer can be modelled as a set of processes {actions) that
communicate with each other via channels. A channel is a unidirectional link
between two processes which provides synchronised communication. A process can
be a primitive process, or a collection of processes; hence the system supports a
hterarchical structure. Processes are dynamic in that they can be created, can die and
can create other processes.

3.4.2 Digital Signal Processors

In applications such as speech processing, telecommunications, radar and hi-fi
systems analog technigues have been used for modifying the signal characteristics.
There are advantages to be gained if such .processing can be done using digital
techniques in that the digital devices are inherently more reliable and not subject to
drift. The problem js that the bandwidth of the signals 1o be processed is such as
to demand very high processing speeds.

Special purpose integrated circuits optimised to meet the signal processing
requirements have been developed. They typically use the so-called Harvard
architecture in which separate paths are provided for data and for instructions.
DSPs typically use fixed point arithmetic and the instruction set contains
instructions for manipulating complex numbers. They are difficult to program as
few high-level language compilers are available.

3.5 PROCESS-RELATED INTERFACES

Instruments and actuators connected to the process or plant can take a wide variety
of forms: they may be used for measuring temperatures and hence use thermo-
coupies, resistance thermometers, thermistors, etc.; they could be measuring flow
rates and use impulse turbines; they could be used to open valves or to control
thyristor-operated heaters. In all these operations there is a need to convert a digital
quantity, in the form of a bit pattern in a computer word, to a physical quantity,
or to convert a physical quantity to a bit pattern. Designing a different interface for
each specific type of instrument or actuator is not sensible or economic and hence
we look for some commonality between them. Most devices can be allocated to
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one of the following four categories:

1. Digital quantities: These can be either binary, that is a valve is open or
closed, a switch is on or off, a relay should be opened or closed, or a
generalised digital quantity, that is the output from a digital voitmeter in
BCD (binary coded decimal) or other format.

2. Analog quantities: Thermocouples, strain gauges, €t¢., give outputs which
are measured in millivolts; these can be amplified using operational A
amplifiers to give voltages in the range —10 to +10 volts; conventional
industrial instruments frequently have a current output in the range 4 to
20 mA (current transmission gives much better immunity to noise than
transmission of low-voltage signals). The characteristic of these signals is
that they are continuous variables and have to be both sampled and
converted to a digital value.

1. Puises and pulse rates: A number of measuring instruments, particularly
flow meters, provide output in the form of pulse trains; similarly the
increasing use of stepping motors as actuators requires the provision of
pulse outputs. Many traditional controllers have also used pulse outputs:
for example, valves controlling flows are frequently operated by switching
a de or ac motor on and off, the length of the on pulse being a measure of
the change in valve opening required.

4. Telemetry: The increasing use of remote outstations, for example electricity
substations and gas pressure reduction stations, has increased the use of
telemetry. The data may be transmitted by landline, radio or the public
telephone network: it is, however, characterised by being sent in serial
form, usually encoded in standard ASCII characters. For small quantities
of data the transmission is usually asynchronous. Telemetry channels may
also be used on a plant with a hierarchy of computer systems instead of
connecting the computers by some form of network. An example of this is
the CUTLASS system used by the Central Electricity Generating Board,
which uses standard RS232 lines to connect a hierarchy of control
computers.

The ability to classify the interface requirements into the above categories
means that a limited number of interfaces can be provided for a process control
computer. The normal arrangement is to provide a variety of interface cards which
can be added to the system to make up the appropriate configuration for the process
to be controlled; for example, for a process with a large number of temperature
measurements several analog input boards may be required.

3.5.1 Digital Signal Interfaces

A simple digital input interface is shown in Figure 3.4, It is assumed that the plant
outputs are logic signals which appear on lines connected to the digital input
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Figure 3.4 Simple digital input interface.

register. It is usual to transfer one word at a time to the computer, so normally the
digital input register will have the same number of input lines as the number of bits
in the computer word. The logic levels on the input lines will typically be 0 and
+ 5 V;if the contacts on the plant which provide the logic signals use different levels
then conversion of signal levels will be required.

To read the lines connected to the digital input register the computer has to
place the address of the register on the address bus and decoding circuitry is required
in the interface (address decoder) to select the digital input register. In addition to
the *select’ signal an ‘enable’ signal may also be required; this could be provided by
the ‘read’ signal from the computer control bus. In response to both the ‘select’ and
‘enable’ signals the digital input register enables its output gates and puts data onto
the computer data bus. Note that for proper operation of the data bus the digital
input register must connect its output gates to the data bus only when it is selected
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and enabled; if it connects.at any other time it wili corrupt data intended for other
devices.

The timing of the transfer of information will be governed by the CPU timing.
A typical example is shown in Figure 3.5. For this system it is assumed that the
transfer requires three cycles of the system clock, labelled Ti, T2, and T3. The
address lines begin to change at the beginning of the cycle T, and they are
guaranteed to be valid by the start of cycle 73; also at the start of cycle 7> the READ
line becomes active. For the correct read operation the digital input register has to
provide stable data at the negative-going edge (or earlier) of the clock during the T
cycle and the data must remain on the data lines until the negative-going edge of
the following clock cycle. Note that the actual time taken to transfer the data from
the data bus to the CPU may be much shorter than the time for which the data is
valid. The requirement that it remain valid from the negative-going edge of cycle
7, until the negative-going edge of the following cycle is to provide for the
worst case condition arising from variations in the performance of the various
components.

Figure 3.4 shows a system that provides information only on demand from the
computer: it cannot indicate 10 the computer that information is waiting. There are
many circumstances i which it is useful to indicate a change of status of input lines
to the computer. To do this a status line which the computer can test, 0T which can -
be used as an interrupt, is needed.

A simple digital cutput interface is shown in Figure 3.6. Digital output is the
simplest form of output: all that is required is a register or latch which can hold the

‘ T, T T, T,
System
clock
|
|
—
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Figure 3.5 Simplified READ (INPUT) timing diagram.
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Figure 3.6 Simple digital output interface.

data output from the computer. To avoid the data in the register changing when the
data on the data bus changes, the output latch must respond only when it is
addressed. The ‘enable’ signal is used to indicate to the device that the data is stable
on the data bus and can be read. The latch must be capable of accepting the data
in a very short length of time, typically less than | microsecond.

The output from the latch is a set of logic levels, typically 0 to +5 V: if these
levels are not adequate to operate the actuators on the plant, some signal conversion
is necessary. This conversion is often performed by using the low-level signals to
operate relays which carry the higher-voltage signals: an advantage which is gained
from the use of relays is that there is electrical isolation between the plant and the
computer system. The relay can be a mechanical device or more commonly now an
optical isolation device.

The digital input and output interfaces described above can also be used to
accept BCD data from instruments, since they are essentially parallel digital input
and output devices. A 16 bit digital input device could, for example, transmit four
BCD digits to the computer (this would correspond to a precision of one part in
16 000 — 0 to 9999).



Process-refated Interfaces 81

Because digital input and output is a frequently required operation, many
microprocessor manufacturers produce integrated circuits which provide such an
interface.

3.5.2 Pulse Interfaces

In its simplest form a pulse input interface consists of a counter connected to a line
from the piant. The counter is reset under program control and after a fixed length
of time the contents are read by the computer. A typical arrangement is shown in
Figure 3.7, which also shows a simple pulse output interface. The transfer of data
from the counter to the computer uses techniques similar to those for the digital
input described above. :

The measurement of the length of time for which the count proceeds can be

Plant
IIir _LILril
|
Puise Pulse train *
counter generator
Enable T Select Enable Seldt
‘ ’ anfotf
Reset —J | Address Address
B decode decode

Address

Control

Data

Figure 3.7 Pulse input and output interface.
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carried out either by a logic circuit in the counter interface or by the computer. If
the timing is done by the computer then the ‘enable’ signal must inhibit the further
counting of pulses. If the computing system is not heavily loaded, the external
interface hardware required can be reduced by connecting the pulse input to an
interrupt and counting the pulses under program control.

Pulse outputs can take a variety of forms;

a series of pulses of fixed duration;

a single pulse of variable length (time-proportioned output); and

pulse width modulation — a series of pulses of different widths sent at a
fixed frequency.

L O

For type 1 the computer turns a pulse generator on or off, or loads a register with
the number of pulses to be transmitted. The pulse output is sent to the process and
used to decrement the register contents; when the register reaches zero the pulse
output is turned off. A system of this type could be used, for example, to control
the movement of a stepping motor,

For type 2 the computer raises or lowers a logic line and thus sends a variable
length pulse to the plant, or loads a register with a number specifying the length of
pulse required and interface logic is used to generate the pulse. The variable length
pulse system is used typically to operate process control valves. Using the computer
to turn the pulse train on or off directly is usual only on small systems with a few
input or output kines, or when the pulse rate is Jow. For large systems, or for high
pulse rates, it is normal to arrange for the interface logic to generate the actual pulse
train or to control the duration of the pulse.

For type 3, pulse width modulation (PWM), special purpose interface chips are
used to generate the pulses. Normally with this type of output a fast PWM stream
will be produced and this is then converted into a linear analog output by using a
low-pass filter.

Closely related to pulse counters are hardware timers. If the pulse counter is
made to count down from a preset value at a fixed rate it can act as a timer. For
example, if the clock rate used to decrement the counter is set at one count per
millisecond, it can be used as a timer with a precision of 1 ms. The counter is loaded
with a binary number corresponding to the desired time interval and the count
started; when the counter reaches zero it generates an interrupt to indicate that it
has ‘timed out’, that is that the interval has elapsed. The computer can then take
the appropriate action.

The input to a hardware timer is normally a continuously running accurate pulse
generator which either may have a fixed frequency or may be programmable to give
a range of frequencies, for example thousandths, hundredths, tenths and seconds.
The unit is programmed either by setting external switches or by commands sent by
the computer. Hardware timers can be used to set the maximum time allowed for
the response from an external device: the computer requests a response from a
device and at the same time starts a hardware timer; if the device has not responded
by the time the hardware timer interrupts then an error signal is generated.
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A special form of this is the warch-dog timer which is often used on process
control computers. The timer is reset at fixed intervals, usually when the operating
system kernel is entered: if the watch-dog timer ‘times out’ it indicates that for some
reason the operating system kernel has not been entered at the correct time, either
because of some hardware malfunction, or because the normal interrupts have been
locked out by a software error. A hardware timer can be used as a real-time clock
(see section 3.5.4 below).

3.56.3 Analog Interfaces

The conversion of analog measurements to digital measurements involves two
operations: sampling and guantisation. The sampling rate necessary for controlling
a process is discussed in the next chapter. As is shown in Figure 3.8 many analog-to-
digital converters (ADCs} include a ‘sample—hold’ circuit on the input to the device.
The sample time of this unit is much shorter than the sample time required for the
process; this sample-hold unit is used to prevent a change in the quantity being
measured while it is being converted to a discrete quantity.

To operate the analog input interface the computer issues a ‘start’ or ‘sample’
signal, typically a short pulse (1 microsecond), and in response the ADC switches
the ‘sample—~hold’ into SAMPLE for a short period after which the quantisation
process commences. Quantisation may take from a few microseconds to several
milliseconds. On completion of the conversion the ADC raises a ‘ready’ or
‘complete’ line which is either polled by the computer or is used to generate an
interrupt.

Use of separate ADCs for each analog input is expensive, despite the reduction
in price in recent years, and typically a multiplexer is used to switch the inputs from
several input lines to a single ADC (see Figure 3.8). For high-level (0—10 V) signals
the multiplexer is usually a solid-state device (typically based on the use of field
effect transistor switches); for low-level signals in the millivolt range, for example
from thermocouples or strain gauges, mercury-wetted reeu relay switch units are
used. For low-level signals, a programmable gain amplifier is usually used between
the multiplexer and the sample—hold unit. With a multiplexed system the sequence
of operations is more complex than with a single-channel device as the program has
to arrange for the selection of the appropriate input channel.

For the simplest systems a single channel-select signal is used which causes the
multiplexer to step to the next channel: the channels are thus sampled in sequence.
A more elaborate arrangement is to provide random channel selection by connecting
channel address inputs to the computer data bus. The sequence of events is then:
select the channe! address, send the start conversion command and then wait for the
conversion complete signal. In some high-speed converters it is possible to send the
next channel address during the period in which the present input is being guantised.
This technique is also frequently used with reed-relay switching since a delay to allow
time for the signal to stabilise is required between selecting a channel and sampling.
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Figure 3.8 Analog input system.

Digital-to-analog conversion is simpler (and hence cheaper) than analog-to-
digital conversion and as a consequence it is normal to provide one converter for
each output. (It is possible to produce a multiplexer in order to use a single digital-
to-analog converter (DAC) for analog output. Why would this solution not be
particularly useful?) Figure 3.9 shows a typical arrangement. Each DAC is
connected to the data bus and the appropriate channel is selected by putting the
channel address on the computer address bus. The DAC acts as a latch and holds
the previous value sent to it until the next value is sent. The conversion time is
typically from 5 to 20 ms and typical analog outputs are -5 to +5V, —10 to
+ 10 V, or a current output of 0 to 20 mA.
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Figure 3.9 Analog output system.

3.5.4 Real-time Clock

A real-time clock is a vital auxiliary device for control computer systems. The
hardware unit given the name ‘real-time clock’ may or may not be a clock; in many
systems it is nothing more than a pulse generator with a precisely controlled
frequency.

A common form of clock is based on using the ac supply line to generate pulses
at 50 (or 60) times per second. By using slightly more complicated circuitry higher
pulse rates can be generated, for example 100 (or 120) pulses per second. The pulses
are used to generate interrupts and the interrupt handling software counts the
interrupts and hence keeps time. If a greater precision in the time measurement than
can be provided from the power supply is required then a hardware timer is used.
A fixed frequency pulse generator {usually crystal-driven) decrements a counter
which, when it reaches zero, generates an interrupt and reloads the count value. The
interrupt activates the real-time clock software. The interval at which the timer
generates an interrupt, and hence the precision of the clock, is controlled by the
count value loaded into the hardware timer.

The choice of the basic clock interval, that is the clock precision, has to be a
compromise between the timing accuracy required and the load on the CPU. If too
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small an interval is chosen, that is high precision, then the CPU will spend a large
proportion of its time simply servicing the clock and will not be able to perform: any
other work.

The real-time clock based on the use of an interval timer and interrupt-driven
software suifers from the disadvantage that the clock stops when the power is lost
and on restart the current value of real time has to be entered. Reai-time clocks are
now becoming available in which the clock and date function are carried out as part
of the interface unit, that is the unit acts like a digital watch. Real time can be read
from the card and the card can be programmed to generate an interrupt at a
specified frequency. These units are usually supplied with bartery back-up so that
even in the absence of mains power the clock function is not lost.

Real-time clocks are also uwsed in batch processing and on-line computer
systems. In the former, they are used to provide date and time on printouts and also
for accounting purposes so that a user can be charged for the computer time used;
the charge may vary depending on the time of day or day of the week. In on-line
systems similar facilities to those of the batch computer system are required, but in
addition the user expects the terminal to appear as if it is the only terminal connected
to the system. The user may expect delays when the program is performing a large
amount of calculation but not when it is communicating with the terminal. To avoid
any one¢ program causing delays to other programs, no program is allowed to run
for more than a fraction of a second; typically timings are 200 ms or less. If further
processing for a particular program is required it is only performed after all other
programs have been given the opportunity to run. This technique is known as time
slicing.

3.6 DATA TRANSFER TECHNIQUES

Although the meaning of the data transmitted by the various processes, the operator
and computer peripherals differs, there are many common features which relate to
the transfer of the data from the interface 1o the computer. A characteristic of most
interface devices is that they operate synchronously with respect to the computer and
that they operate at much lower speeds. Direct control of the interface devices by
the computer is known as ‘programmed transfer’ and involves use of the CPU.
Programmed transfer gives maximum flexibility of operation but because of the
difference in operating speeds of the CPU and many interface devices it is inefficient.
An alternative approach is to use direct memory access (DMA); the transfer
requirements are set up using program control but the data transfers take place
directly between the device and memory without disturbing the operation of the
CPU (except that bus cycles are used). "

With the reduction in cost of integrated circuits and microprocessors, detailed
control of the input/output operations is being transferred to I/O processors which
provide buffered entry. For a long time in on-line computing, buffers have been used
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to collect information (for example, a line) before invoking the program requesting
the input. This approach is now being extended through the provision of IO
processors for real-time systems. For example, an I/O processor can be used to
control the scanning of a number of analog input channels, only requesting main
computer time when it has collected data from all the channels. This can be extended
so that the IO processor checks the data to test if any values are outside preset limits
set by the main system.

A major problem in data transfer is timing. It may be thought that under
programmed transfer, the computer can read or write at any time to a device, tQat
is, can make an unconditional transfer. For some process output devices, for
example switches and indicator lights connected to a digital output interface, or for
DACs, unconditional transfer is possible since they are always ready to receive data.
For other output devices, for example printers and communications channels, which
are not fast enough to keep up with the computer but must accept a sequence of
data items without missing any item, unconditional transfer cannot be used. The
computer must be sure that the device is ready to accept the next item of data; hence
either a timing loop to synchronise the computer to the external device or
conditional transfer has to be used. Conditional transfer can be used for digital
inputs but not usually for pulse inputs or analog inputs. Where unconditional
transfer is used to read the digital value or an analog signal, or the value of a digital
instrument rather than simply the pattern of logic indicators, then Gray code or
some other form of cyclic binary code should be used to avoid the possibility of large
transient errors.

3.6.1 Polling

A simple example of conditional transfer is shown in Figure 3.10. Assuming that
the data is being transferred to a printer which operates at 40 characters per second,
the computer will find that the device is ready once every 25 milliseconds. The three
instructions involved in performing the test will take approximately 5 ps (the actual
time will depend on the speed of the processor); thus the conditional test will be
carried out 5000 times for each character transmitted. The computer will spend
99.98% of its time in checking to see if the device is ready and only 0.02% of the
time doing useful work; this is clearly inefficient.

A software timing loop can be used as an alternative to a status line on the
interface. For example, a delay can be created by loading a register with a number
and repeatedly decrementing the register until it reads zero:

LD B, 25 ;load register Bwith time delay
LOCP DEC B ;decrement B
JRNZ, LOOP ;repeat until B is zero

To ensure that no transfer is made before the peripheral is ready the time delay
must be slightly greater than the maximum delay expected in the peripheral; thus
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Figure 3.10 Conditional transfer {busy wait}.

in terms of use of the CPU this method is even more inefficient than the use of the
conditional wait. However, it does slightly simplify and reduce the cost of the
interface.

An alternative arrangement for conditional transfer, which allows the computer
to continue doing useful work if the device is busy, is shown in Figure 3.11. In this
method a check is made to see if the device is ready: if it is ready then the transfer
is made; if it is not the computer continues with other work and returns at some later
time to check the device again. The technique avoids the inefficiency of waiting in
a loop for a device to become ready, but presents the programmer with the difficult
task of arranging the software such that all devices are checked at frequent intervals.

Conditional transfer techniques involve polling, which is using the computer to
check whether a device is ready for a data transfer. The problems of polling using
conditional waits can be avoided if the computer can respond to an interrupt signal.

3.6.2 Interrupts

An interrupt is a mechanism by which the flow of the program can be temporarily
stopped to allow a special piece of software - an interrupt service routine
(also called an interrupt handler) — to run. When this routine has finished, the
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Figure 3.11 Conditional transfer.

program which was temporarily suspended is resumed. The process is illustrated in
Figure 3.12.

Interrupts are essential for the correct operation of most real-time computer
systems; in addition to providing a solution to the conditional wait problem they are
used for:

Real-time clock: The external hardware provides a signal at regularly spaced
intervals of time; the.interrupt service routine counts the signals and keeps a
clock.

Alarm inputs; Yarious sensors can be used to provide a change in a logic level
in the event of an alarm. Since alarms should be infrequent, but may need
rapid response times, the use of an interrupt provides an effective and efficient
solution.

Manual override: Use of an interrupt can allow external control of a system to
aliow for maintenance and repair.

Hardware failure indication: Failure of external hardware or of interface units
can be signalled to the processor through the use of an interrupt.
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Figure 3.12 Interrupt-driven program control transfer,

Debugging aids: Interrupts are frequently used to insert breakpoints or traces
in the program during program testing.

Operating system: Interrupts are used to force entry to the operating system
before the end of a time slice. .

Power failure warning: 1t is simple to include in the computer system a circuit
that detects very quickly the loss of power in the system and provides a few
milliseconds’ warning before the loss is such that the system stops working.
If this circuit is connected to an interrupt which takes precedence over all
other operations in the computer there can be sufficient time to carry out a
few instructions which could be sufficient to close the system down in an
orderly fashion,

3.6.2.1 Saving and restoring registers

Since an interrupt can occur at any point in a program, precautions have to be taken
to prevent information which is being held temporarily in the CPU registers from
being overwritten. All CPUs automatically save the contents of the program
counter; this is vital, If the contents were not saved then a return to the point in the
program at which the interrupt occurred could not be made. Some CPUs, however,
do more and save all the registers. The methods commonly used are:

® Store the contents of the registers in a specified area of memory. (Note that
this implies that an interrupt cannot be interrupted — see below.)

® Store the registers on the memory stack. This is a simple, widely used
method which permits muiti-level interrupts; the major disadvantage is the
danger of stack overflow. '
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e Use of an auxiliary set of registers. Some processors provide two sets of the
main registers and an interrupt routine can switch to the alternative set. If
only two sets are provided multi-level interrupts cannot be handied. An
alternative method is to use a designated area of memory as the working
registers and then an interrupt only requires a pointer to be changed to
change the working register set.

The use of automatic storage of the working registers is an efficient method if
all registers are to be used; it is inefficient if only one or two will be used by the
interrupt routine. For this reason fully automatic saving is usually restricted to
CPUs with only a few working registers in the CPU: systems with many working
registers provide an option either to save or not to save. Unless response time is
critical it is good engineering practice to save all registers: in this way there is no
danger, in a subsequent modification to the interrupt service routine, of using a
register which is not being saved, and failing to add it to the list of registers to be
saved. The resulting error would be difficult to find since it would cause random
malfunctioning of the system.

The machine status must of course be restored on exit from the interrupt
routine; this is straightforward for all methods except that which uses the stack to
save registers; in this case the registers are restored in the opposite order than that
in which they were saved. Systems providing automatic saving also provide
automatic restore on exit from the interrupt.

An example of the framework of an interrupt service routine is shown below.

INT1: CALL SAVREG ;SAVREG is routine which saves
© ;Working registers

H
;code for interrupt handling is inserted here

CALL RESREG ;RESREG is routine which
;restores working re:isters

El ;enable interrupts

RETI ;return from interrupt rogutine

The above routine is suitable for a system in which interrupts are not allowed
to be interrupted; hence the EI instruction which enables interrupts is not executed
until immediately prior to the return from interrupt. The return from an interrupt
routine has to be handled with care to preévent unwanted effects. For example, the
E1 instruction does not re-enable interrupts until after the execution of the
instruction which immediately follows it. Therefore, by using the EIfRETI
combination a pending interrupt cannot take effect until after the return from the
previous one has been completed. In this example it is assumed that the
microprocessor automatically disables interrupts on acknowledgement of an
interrupt and they remain disabled until an €I instruction is executed. Some CPUs
operate by disabling interrupts for only one instruction following an interrupt
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Figure 3.13 Flowchart of basic interrupt mechanism,
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acknowledge; it thus becomes the responsibility of the programmer to disable
interrupts as the first instruction of the interrupt service routine if only a single level
of interrupt is to be supported.

3.6.2.2 Interrupt input mechanisms

A simple form of interrupt input is shown in Figure 3.13. In between each
instruction the CPU checks the IRQ line. If it is active, an interrupt is present and
the interrupt service routine is entered; if it is not active the next instruction is
fetched and the cycle repeats. Note that an instruction involves more than one CPU
clock cycle and that the interrupt line is checked only between instructions. Because
several clock cycles may clapse between successive checks of the interrupt line,
the interrupt signal must be latched and only cleared when the interrupt is
acknowledged.

A common arrangement is to have two interrupt lines as shown in Figure 3.4
one of the lines, IRQ, can be enabled and disabled using software and hence the
computer can run in a mode in which external events cannot disturb the processing.
A second interrupt line is provided; this interrupt cannot be turned off by software
and hence it is said to be a non-maskable interrupt (NMI}. A typical use would be
to provide the power failure detect interrupt.

Although most modern computer CPUs have only one or two interrupt lines,
a large number of interrupts can be connected by means of an OR gate. It then

CPU
Cont.rol
unit
El/DI
w_ | H-
NMI

Figure 3.14 Typical basic interrupt system.
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becomes a problem to determine which of the many external interrupt lines has
generated the CPU interrupt.

3.6.2.3 Interrupt response mechanisms

The CPU may respond to the interrupt in a v'ariety of ways; some of the more
popular methods are given below;

1. Transfer control to a specified address — usually in the form of a ‘call’
instruction.

2. Load the program counter with a new value from a specified register or
memory location.

3. Execute a ‘call’ instruction but to an address supplied from the external
system.

4. Use an output signal — an Interrupt Acknowledge — to fetch an instruction
from an external device.

Methods I and 2 are said to be sofrware biased, in that they require little in the way
of external hardware and rely instead on software to determine the interrupt source
and the appropriate interrupt service routine. Methods 3 and 4 arc hardware biased
in that they require more external hardware but can identify the interrupt source and
can transter program control directly to the appropriate interrupt service routine.

In method 2 the address of the interrupt response routine is stored in specified
memory locations; the address stored here is cailed the fnterrupt vector or interrupt
response vector. Once the interrupt is detected control is passed to an interrupt
response routine and polling must be used to determine which device has caused the
interrupt. A

The use of polling in interrupt systems has the advantage over normal polling
systems that at least one of the inputs is guaranteed to be active. It is clearly,
however, not a very satisfactory system if large numbers of devices have to be
checked. The load can be reduced by testing the devices which interrupt most
frequently first, but this may conflict with response time requirements in that a
device which interrupts infrequently may require a rapid response time and hence
should be checked first. If an equal response time, on average, for each device is
required it will be necessary to rotate the order in which the devices are checked.
Doing this can also prevent one device which interrupts frequently from locking out
all others. The method does provide a flexible way of allocating priority to the
various devices which can generate interrupts.

3.6.2.4 Hardware vectored interrupts

Methods 3 and 4 require the use of some form of vectored interrupt structure to
identify which of the external devices has generated an interrupt. They also require
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a mechanism to arbitrate between the possible sources of the interrupt to prevent
more than one interrupt activating the IRQ at any one time. The process of
arbitration involves assigning priorities to the various interrupts.

A frequently used arrangement is the daisy chain in which an ‘acknowledge’
signal is propagated through the devices until it is blocked by the interrupting device.
Figure 3.15 shows a typical arrangement. Each unit has an IEI (Interrupt Enable In)
pin and an 1EO (Interrupt Enable Out) pin; it is assumed that on both pins the active
signal is high. The first IEI in the chain is set permanently on ‘high’. For any given
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Figure 3.15 Daisy-chain interrupt structure: {a) no interrupt condition; (b} device 2
generates interrupt and is acknowledged; (c} device 1 generates interrupt, servicing of
device 2 is suspended; (d) device 1 servicing completed, ‘RET’ instruction executed,
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unit the output pin IEQ is high if, and only if, the input 1EI is high and the unit
is not requesting an interrupt. If a device is requesting an interrupt and IEI is high,
that device should set IEO low and in response to an ‘interrupt acknowledge’ signal
send its interrupt vector. If a device is requesting an interrupt but the IEI is low then
it should not respond to the interrupt acknowledge signal.

In Figure 3.15a the system is shown with no interrupts active, so all the signals
are at high. The effect of Device 2 generating an interrupt and it being acknowledged
is shown in Figure 3.15b: Device 2 is serviced, Device 3 is locked out and
Devices 0 and | can still interrupt. If Device 1 now generates an interrupt the
servicing of Device 2 will be suspended in favour of Device 1 (see Figure 3.15¢).
On completion of the servicing of Device 1, the servicing of Device 2 resumes
(Figure 3.15d). Finally, when this is completed, all the IEI/IEQ signals return to
‘high’ and all devices are enabled. The assumption implicit in this arrange-
ment is that one interrupt service routine can itself be interrupted by a higher-
priority interrupt. This is known as a multi-level interrupt structure and is dealt
with below.

In a daisy-chain arrangement the device priority is determined by the position
of the device in the chain and cannot be changed by the software. Great care has
to be given to timing considerations; in particular, care has to be taken to allow the
1EI signal time to propagate along the chain.

The determination of interrupt priority can be performed using priority encoder
circuits (see Figure 3.16). In this system an interrupt occurring on any line causes
the interrupt line (IRQ) to become active and also places a three-bit code specifying
the number of the interrupt line which is active on the data bus. In the event of more
than one line being active the priority encoder supplies the number of the highest-
priority interrupt — the usual arrangement is that the line with the lowest number
is considered to be of highest priority.

3.6.2.5 Interrupt response vector

The interrupt response vector in the above systems can take a variety of forms: it
may be an instruction, the address of the interrupt service routine, the address of
a pointer to an interrupt service routine, or part of the address of the interrupt
service routine or pointer.

A widely used method is to employ an interrupt mechanism in which the
interrupting device supplies the address of the location in which the pointer to the
start of the interrupt routine is stored. When a device interrupts it supplies this
address and the CPU loads the program counter with the contents of the interrupt
vector location and hence control of the CPU passes to the first instruction of the
interrupt service routine.
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3.6.2.6 Multi-level interrupts

In most real-time systems a single interrupt level is unacceptable; the whole purpose
of interrupts is to get a fast response and this would be prevented if a low-priority
interrupt could lock out a high-priority one. A typical picture of multi-level
interrupts is shown in Figure 3.17. An application program (the main task) is
interrupted at regular intervals by the clock interrupt which is the highest-priority
interrupt (level 0), When the interrupt occurs control is passed to the clock interrupt
service routine (ISR 0) — transfers 1, 2 and 3 in Figure 3.17. During the servicing
of the clock interrupt, the printer generates an interrupt request (4), but since the
printer is of lower priority than the clock the interrupt is not dealt with until the
clock routine ISR 0 has finished. When this occurs, instead of control returning to
the main program it passes to the printer service routine ISR I (5). The printer
service routine does not complete before the next clock interrupt, so it is suspended
(6) while the next interrupt from the clock is dealt with. At the termination of the
clock routine return is made to the printer (7) and finally, when the printer ISR
finishes, a return is made to the main program (8).

It should be obvious that the ability to interrupt an interrupt service routine
should be restricted to interrupts which are of higher priority than the routine
exccuting. In order to do this there has to be some facility for masking out (or
inhibiting) interrupts of lower priority. Masking is achieved automatically in the
daisy-chain system, since a device which wishes to interrupt lowers its IEQ line thus
preventing all lower-priority devices from responding to the interrupt acknowledge
signal. In the daisy-chain system, however, the device must receive a signal from the
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Figure 3.17 Multi-level interrupts.
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CPU on return from the interrupt service routine in order that it can set the IEO
line high and hence permit access to the system by lower-priority devices.

An alternative scheme used is to have a mask register which can be loaded from
software and used to inhibit the Jower-priority interrupt lines. Figure 3.18 shows a
system which uses a priority encoder and the software sequence is outlined in Figure
3.19. Note that with the mask system it is possible to mask out any interrupt, not
just ones with lower priority. This can have advantages if, for example, a high-
priority alarm interrupt is continually being generated because of a fault on the
plant; once the fault condition has been recognised it is desirable to mask out the
interrupt to avoid the computer spending all its time simply servicing the interrupt.
The ability to mask out selected levels provides software-controlled priority
reallocation.

Figure 3.19 shows typical functions performed by an interrupt service routine.
The first requirement is to save the working environment, the current mask register
must also be saved and then the new mask register sent out. The interrupts can now
be enabled and the actual servicing of the interrupt commenced. When the servicing
is completed the interrupts are disabled, the previous mask register restored and the
working environment restored. The interrupts can now be enabled and a return from
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Figure 3.18 Interrupt masking.
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interrupt executed. Note that some computer systems automatically disable all
lower-priority interrupts and hence the need to save and restore mask registers is
avoided.

3.6.3 Direct Memory Access

Three methods are normally used — burst mode, distributed mode and cycle stealing.
In burst mode, the DMA controller takes over the data highways of the computer
and locks out the CPU for the period of time necessary to transfer, say, 256 hytes
between fast memory and backing memory. The use of burst mode can seriously
affect the response time of a real-time system to an external event and because of
this may not be acceptable.

In distributed mode the DMA controller takes occasional machine cycles from
the CPU’s control and uses each cycle to transfer a byte of information between fast
memory and backing memory. In a non-real-time system the loss of these machine
cycles to the CPU is not noticeable. However, in a real-time system which uses
software timing loops the loss of machine cycles will then affect the time taken to
complete the timing loop. The program is unaware of the machine cycles used by
the DMA controller and hence will still cycle through the same number of
instructions; however, the elapsed time may be the equivalent of 200 machine cycles
rather than the expected 100 cycles.

The cycle-stealing method only transfers data during cycles when the CPU is not
using the data bus. Therefore the program proceeds at the normal rate and is
completely unaffected by the DMA data transfers. This is, however, the slowest
method of transfer between fast memory and backing store.

3.6.4 Comparison of Data Transfer Techniques

Polling, with either busy wait or periodic checks on device status, provides the
simplest method of data transfer, in terms of the programming requirements and
in the testing of programs. The use of interrupts results in software which is much
less structured than a program with explicit transfers of control; there are potential
transfers of control at every point in the program.

Interrupt-driven systems are much more difficult to test since many of the errors
may be time dependent. A simple rule is to check the interrupt part of the program
if irregular errors are occurring. The generation of appropriate test routines for
interrupt systems is difficult; for proper testing it is necessary to generate random
interrupt patterns and to carry out detailed analysis of the results,

At high data transfer rates the use of interrupts is inefficient because of the
overheads involved in the interrupt service routine — saving and restoring the
environment — hence polling is often used. An alternative for high rates of transfer
is to substitute hardware for software control and use direct memory access
techniques.
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3.7 COMMUNICATIONS

The use of distributed computer systems implies the need for communication:
between instruments on the plant and the low-level computers (see Figure 3.20);
between the Level 1 and Level 2 computers; and between the Level 2 and the higher-
level computers. At the plant level communications systems typically involve parallel
analog and digital signal transmission techniques since the distances over which
communication is required are small and high-speed communication is usually
required. At the higher levels it is more usual to use serial communication methods
since, as communication distances extend beyond a few hundred yards, the use of
parallel cabling rapidly becomes cumbersome and costly.

As the distance between the source and receiver increases it becomes more
difficult, when using analog techniques, to obtain a high signal-to-noise ratio:
this is particularly so in an industrial environment where there may be numerous
sources of interference. Analog systems are therefore generally limited to short
distances. The use of parallel digital transmission provides high data transfer
rates but is expensive in terms of cabling and interface circuitry and again is
normally only used over short distances (or when very high rates of transfer are
required).

Computer
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intermittent Synchroncus
Computer Computer
Level 2:
Medium speed Asynchronous direct
or synchronous network
Computer Computer Computer \

High speed, ! | i Level 1:
frequent parallle!.
transfers analog/digital

transmission
Plant

Figure 3.20 Data transmission links.
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Serial communication techniques can be characterised in several ways:

1. Mode
(a) asynchronous
(b) synchronous

2. Quantity
(a) character by character
(b) block
3. Distance
(a} local
(b) remote, that is wide area
4. Code
(a) ASCI
(b) other

3.7.1 Asynchronous and Synchronous Transmission Technigues

Asynchronous transmission implies that both the transmitter and receiver circuits
use their own local clock signals to gate data on and off the data transmission line.
So that the data can be interpreted unambiguously there must be some agreement
between the transmitter and receiver clock signals. This agreement is forced by the
transmitter periodically sending synchronisation information down the transmission
line. An alternative approach is to use an additional physical connection — a clock
wire - and periodically to send a synchronising signal.

The most common form of asynchronous transmission is the character-by-
character system which is frequently used for connecting terminals to computer
equipment and was introduced for the transmission of information over telegraph
lines. It is sometimes called the stop—start system. Ln this system each character
transmitted is preceded by a ‘start’ bit and followed by one or two ‘stop’ bits (see
Figure 3.21). The start bit is used by the receiver to synchronise its clock with the
incoming data; for correct transfer of data the clock and data signals must remain
synchronised for the time taken to receive the following eight data bits and two stop
bits. The transmission is thus bit synchronous but character asynchronous. The
advantage of the stop-start system is that, particularly at the lower transmission
rates, the frequencies of the clock signal generators do not have to be closely
matched. The disadvantage is that for each character transmitted (seven bits) three
or four extra bits of information have also to be transmitted and thus the overall
information ratio is not very high.

To overcome the problem of transmitting redundant bits, synchronous systems
designed to transmit large volumes of data over short periods of time use block-
synchronous transmission techniques. The characters are grouped into records, for
example blocks of 80 characters, and each record is preceded by a synchronisation
signal and terminated with a stop sequence. The synchronisation sequence is used
to enable the receiver to synchronise with the transmitter clock.



104 Computer Hardware Requirements for Real-time Applications

Asynchronous transmission.
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To establish effective communication more than just a synchronisation signal
must be transmitted - the additional information is called the protocol. A simple
protocol is shown in Figure 3.22. At the start of a transmission, bit synchronisation
is achieved by the transmitter sending out a sequence of zeros and ones, followed
by the ASCII code ‘SYN'. The transmitter will continue to send the SYN code until
the receiver responds by sending back the code ‘ACK’ or a preset time elapses
(device time out); if time out occurs, the transmitter sends the bit parttern of zeros
and ones again. Once contact has been established the transmitter will send cut SYN
characters during any idle period and the receiver will respond by sending back
ACK; the line will only be completely idle when an EOT (End Of Transmission)
character has been sent by the transmitter. The text is broken up into blocks and
each block is preceded by an STX (Start of TeXt) character and ended by an ETX
(End of TeXt) character. Following the ETX will be an integrity check on the data;
typically this will take the form of a parity check.

There are two main standards for synchronous transmission systems;

I. BISYNC (Blnary SYNchronous Communication). This is the older system
used in IBM equipment and is obsolescent.

2. HDLC (High-level Data Link Control). This is used in most new
equipment.

In synchronous transmission systems the clock signal for the timing of the data
transfer is provided solely by the transmitter and is sent to the receiver even when
no data is being transmitted. When data is transmitted it is superimposed on the
clock signal. With synchronous transmission there is no need to transmit extra bits
to enable the receiver clock to synchronise with the transmitter and hence the
effective data transmission rate for a given speed of line is higher. The disadvantage
is that the interface circuitry is more complex and hence more expensive. The use
of synchronous transmission does not avoid the need for a transmission protocoi.
The advantage of block transmission is that a much higher ratio of data bits to
control bits can be obtained,

3.7.2 Local- and Wide-area Networks

Wide-area networks have existed for many years and they operate over a very wide
geographical area (many are international networks) at moderate speeds. The local-
area network (LAN} is a more recent development and it is having a considerable
impact on the design of process control equipment. LANs make use of a wide range
of transmission media such as twisted pair, co-axial cable, and fibre optics; they
operate at a range of transmission speeds (up to 240 Mbit s~ 'y and use-a range of
different protocols and topologies.

Typical topologies are shown in Figure 3.23. For computer control applications
no one topology represents the best solution: the particular application will
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Figure 3.23 LAN topologies: {a) data bus; (b) star; (c) hierarchy (or tree); (d) ring;
{e) mesh.

govern the most appropriate one. The characteristics of each are briefly outlined
below.

Data bus: This is the simplest of all the LAN topologies. The bus is normally
passive and all the devices are simply plugged into the transmitting medium.
The bus is inherently reliable because of its passive nature but there may be
a limitation on the length of a bus in that any transmitting device connected
has to be able to transmit for the full length of the bus. It is a broadcast
system and hence a packet of data placed on the bus is available to all
devices.

Star: The star network is not very widely used; it depends on a central switching
node to which all other nodes are connected by a bidirectional link. Data sent
to the central switch can be forwarded either in the broadcast mode, that is
to all other nodes, or only to a specified node. The computer-controlied
PABX (Private Automatic Branch eXchanges) used in many businesses
operate in the star mode - all the telephone lines connect to the central unit
— while the forwarding system used is to a specified node. A weakness of the
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star topology is that the central node is a critical component in the system;
if it fails, the whole system fails.

Hierarchy: The system has many of the characteristics of the star, but instead
of one central switching node, many of the nodes have to act as switches.
Frequently it can closely reflect the actual structure of the application. The
addition of new nodes to a hierarchy can be difficult.

Ring: This is probably the most popular method. The ring is typically an active
transmission system, that is the ring itself contains regeneration circuits which
amplify the signals. The information placed on a ring network continues to
circulate until a device removes it from the ring; in some systems the
originating device removes the data from the ring. The information is
broadcast in the sense that it is available to all devices connected to the ring,

Mesh: The mesh topology allows for random interconnection between the
various nodes. It provides a means by which alternative routes between nodes
can be found and hence has built into it a form of redundancy. A problem
which can arise with the mesh is that there can be a variable delay between
the sencing and receiving of the message because of the number of nodes
through which the message has had to pass. Information is transmitted in the
form of ‘packets’ which may be of fixed or variable length. Early systems
used character-oriented packets similar to that illustrated in Figure 3.22. The
prevailing standard is now the HDLC protocol (referred to in the previous
section) and the format of the packet is shown in Figure 3.24,

The access mechanisms used to ensure that only one node of the network is
attempting to transmit at any one time divide into two main types:

® synchronous token passing, message siots; and
® asynchronous carrier sense multiple accessfcollision detection (CSMA/CD).

Ring-based LANs normally use synchronous techniques. The packets of data
circuiate in one direction around the ring and in the token passing system attached
to one, and only one, packet is a token. (If the network is idle a packet containing
Just the token is circulated.) Each node reads the packet into a buffer and checks
the message. There are three actions which can then be taken.

1. if the message is for that node it is read, marked as accepted and replaced

8 8 8 =( 16 8
01111110 | Address Control Data Checksum | 01111110
Start delimiter End delimiter

Figure 3.24 Format of HDLC packet.
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on the ring — it will be removed from the ring when it reaches the
originating node.

2. If the message is not for that node it is simply replaced on the ring.

3. If the packet contains the token and the node wishes to transmit a message,
the token is removed from the packet which is then passed on. The node
then transmits its own message adding the token to the end of the message.

An alternative to the token passing method is the message slot. A sequence of
bits is used to mark a slot and the slots circulate around the ring. 1f a node detects
an empty slot it may insert a message in that slot.

Bus LANs may use token passing (the token is passed from node to node in
some predetermined manner) or message slots but asynchronous methods are more
common. In the asynchronous systems a node may attempt to transmit at any time.
The node listens to the bus and if it is idle begins to transmit. Because of the
distances between nodes and the time taken to transmit a message, two (or more}
nodes may be transmitting simultaneously. If this happens a collision is said to have
occurred; bus systems must therefore have some means of detecting a collision. If
a collision is detected the nodes attempting to transmit execute a random delay and
then retry.

Several of the major process companies have developed distributed control
systems based on the use of LAN technology {mostly rings). These allow a wide
range of devices — from individual instruments to large computers — to be connected
to a commeon network.

3.8 STANDARD INTERFACES

Most of the companies which supply computers for real-time control have developed
their own ‘standard’ interfaces, such as the Digital Equipment Corporation’s Q-bus
for the PDP-11 series, and, typically, they, and independent suppliers, will be able
to offer a large range of interface cards for such systems. The difficulty with the
standards supported by particular manufacturers is that they are not compatible
with each other; hence a change of computer necessitates a redesign of the interface.

An early attempt to produce an independent standard was made by the British
Standards Institution (BS 4421, 1969). Unfortunately the standard is limited to the
concept of how the devices should interconnect and the standard does not define
the hardware. It is not widely used and has been overtaken by more recent
developments.

An interface which was originally designed for use in atomic energy research
laboratories — the computer automated measurement and control (CAMAC)
system — has been widely adopted in laboratories, the nuclear industry and
some other industries. There are over 1000 different modules, supported by about
50 manufacturers in eight countries, available for the system. There are also
FORTRAN libraries which provide software to support a wide range of the interface
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modules. One of the attractions of the system is that the CAMAC data highway
connects to the computer by a special card; to change to a different computer only
requires that the one card be changed.

A general purpose interface bus (GPIB) was developed by the Hewlett Packard
Company in the early 1970s for connecting laboratory instruments to a computer.
The system was adopted by the IEEE and standardised as the IEEE 488 bus system.

Table 3.1 The ISO seven-layer modal

Layer Description Standards
Physical Defines the electrical and mechanical RS232-C
interfacing to a physical medium. Sets up, RS442/443/449
maintains and disconnects physical links. V.24{V. 28
Includes hardware (/O ports, modems, vV.10/v.11
communication lines, etc.) and software X.21, X.21 bis,
(device drivers) X.26, X.27,
X.25 level 1
Data link Establishes error-free paths over physical ANSI-ADCCP \
channel, frames messages, error defection ISO-HDLC LAP
and correction. Manages access to and use DEC DDCMP
of channels. Ensures proper sequence of iBM SDLC, BISYNC
transmitted data X.25 level 2
Network Addresses and routes messages. USA DOD-IP
Sets up communication paths. X255, X75
Flow control (e.g. Tymnet,
Telenet, Transpace,
ARPANET, PSS)
Transport Provides end-to-end control of a USA DOD-TCP
communication session. IBM SNA
Allows processes to exchange data DEC DNA
reliably
Session Establishes and controls node-system- \

Presentation

Application
(user)

dependent aspects. Interfaces transport
level to logical functions in node
operating system

Allows encoded data transmitted via
communications path to be presented in
suitable formats for user manipulation

Allows a user service to be supported, e.g.
resource sharing, file transfers, remote file
access, DBM, etc.

FTP
JTMP
FAM
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Figure 3.25 IS0 seven-layer model.

The bus can connect up to a maximum of 15 devices and is only suited to laboratory
or small, simple control applications.

The I1SO (International Organisation for Standardisation) have promuigated a
standard protocol system in the Open Systems Intercennection {OSI) model. This
is a layered (hierarchical) model with seven layers running from the basic physical
connection to the highest application protocol. The general structure is illustrated
in Figure 3.25. The layers can be described as shown in Table 3.1.

3.9 SUMMARY

This chapter has provided a brief overview of some of the basic hardware ideas that
are relevant to using computers in embedded control applications. We have
concentrated on the basic ideas and not on particular microprocessors. in order to
design a control system involving embedded computers you will need to obtain
detailed knowledge about the particular microprocessor, microcomputer or
microcontroller that you are going to use. In particular you will need to understand
in detail its interface and where appropriate the range of interface support chips
available for the particular processor. If you are going to be able to choose an
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appropriate device you will need to understand the important characteristics of a
wide range of devices,

The key to understanding and coping with the complexities of the available
hardware is to think in layers or hierarchies. An example of this was given in section
3.2.4 when we described the bus structure: we divided the discussion into physical,
electrical and functional characteristics. Another example is the approach adopted
by the ISO in its OSI communication model; detail that is not required at a higher
level is hidden in the lower levels. As you will see later we will apply this approach
to software, and will hide unwanted detail in low-Jevel software modules.

An important aspect of interfacing is the timing of the transfer of data and the
synchronisation of transfers. Timing diagrams of the form shown in Figure 3.4 are
important and you need to be able to read and understand such diagrams.

EXERCISES

3.1 Why is memory protection important in real-time systems?
What methods can be used to provide memory protection?

3.2 A large valve conirolling the flow of steam is operated by a d¢ motor. The motor
controller has two inputs:

1. onfoff control, 0 V =off, 5V = on; and
2. direction, 0 V = clockwise, $ V = anti-clockwise;

and two outputs:

1. fully open=5V;
2. fully closed =5 V.

Show how this valve could be interfaced to a computer controlling the process.

3.3 A turbine flow meter generates pulses proportional to the flow rate of a liquid. What
methods can be used to interface the device to a computer?

34 There are a number of different types of analog-to-digital converters. List them and
discuss typical applications for each type (see, for example, Woolvet (1977) or Barney
{1985)).

3.5 The clock on a computer system generates an interrupt every 20 ms. Draw a flowchart
for the interrupt service routine. The routine has to keep a 24 hour clock in hours,
minutes and seconds.

6 Twenty analog signals from a plant have to be processed (sampled and digitised) every
I's. The analog-to-digital converter and multiplexer which is available can operate in
two modes: automatic scan and computer-controllied scan. In the automatic scan
mode, on receipt of a ‘start’ signal the converter cycles through each channel in turn.
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Figure 3.26 Timing diagram for Exercise 3.6.

The data corresponding to the channel sampled is available for 0.9 ms. The signal
‘not-ready’ is asserted during the conversion period and this indicates that the data
is changing and should not be read by the computer. The timing is shown in Figure
3.26. In Mode 2 under computer-controlled scanning, th: :onverter holds the data for
each channel sampled until it receives a command from the computer to start the
sampling of the next channel. To speed up the operation the multipiexer is switched
to the next channel once the current channel has been sampled and befare the
computer reads the data for the current channel. The converter can be reset to start
from Channel 1 by asserting a signal reset. The timing of this mode of operation is
shown in Figure 3.26b. Consider the ways in which (a) polling and (b) interrupt
methods can be used to interface the converter to a computer. Discuss in detail the
advantages and disadvantages of each method.

We will assume that the simple heat process described in Chapter 1 has, in addition
to a temperature sensor and heat controller, some logic signals and control switches.
These are:

Plant controls.
heater onfoff;
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blower onfoff; and
power onfoff.
Plant signals:
overtemperature alarm; and
blower failure alarm.
The start-up sequence for the unit is:

Turn power on.
Turn blower on.
Wait 5 seconds.
Turn heater on.
DDC control action begins.

e

If at any time the overtemperature alarm becomes true, that is the signal level is set
to logic ‘high’, the heater must be turned off but the blower kept running. If the
blower failure alarm is detected, both the blower and the heater must be switched off.
Draw a flowchart to show the sequence of operations to be carried out (a) for start-up
and (b) in the event of failure,

The hot-air blower system described in Chapter | uses interrupts to indicate: power
failure, printer ready, air temperature too high, VDU display ready, blower failure,
clock signal and key pressed on the keyboard. Draw up a list of the priority order for
the interrupts and explain the reasons for your choice of priority. Should any of the
interrupts be connected to a non-maskable interrupt?
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DDC Algorithms and Their
Implementation

The main purpose of this chapter is to consider the methods used to implement
simple digital control algorithms and some of the problems that arise in so doing.
We shall take as an example a widely used and simple control algorithm: the PID
or three-term control algorithm.

We shall consider:

e The digital form of the algorithm.

e The timing requirements.

e Integral wind-up and bumpless transfer.
® Choice of sampling rates.

The last two sections of the chapter introduce some more advanced control ideas
concerned with finding the discrete equivalents of continuous controllers and the
implementation of control algorithms designed using discrete control system design
techniques. These sections can be omitted if you so wish.

4.1 INTRODUCTION

In Chapter 2 we introduced the idea of DDC (Direct Digi al Control) and stated the
differential equation for a P1D controller:

]

mt) = Ky[e(t) + 1 T; go e()di + Tade(t)] di] (4.1)

where e(f) = r{f) — c{{), #(t) is the desired value {set point), ¢{?) the value of the
variable being controlled and m(s) the output from the controller. The differential
equation is the time domain representation of the controller. The equivalent
frequency domain representation is

MG _ 1
Ge(s) = EGs) K,,(l + T,s+ Tds) (4.2)

In the frequency domain the overall system of controller and plant can be
represented by a block diagram as shown in Figure 4.1,

115
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Figure 4.1 General form of a contral system: {a} continuous form; {b) discrete form.

Both the time domain and frequency domain representations are continuous
representations. To implement the controlier using a digital algorithm we have
to convert from a continuous to a discrete representation of the controller.
There are several methods of doing this; the simplest is to use first-order finite
differences. Considering the time domain version of the controller (equation 4.1)
we replace the differential and integral terms by their discrete equivalents by using
the relationships

df

S S 9
v S elt)dt = 3 exdrt (4.3)

k Ar k=1

and hence equation 4.1 becomes

~e(n -1 1
mn) = K, [Td("—"’%") relm+ k}_jlekm} 4.4)

where m(n) represents the value of m at some time interval #Ar where n is an
integer,
By introducing new parameters as follows:

Ki=Ky(T,/T:)
Ka= Kp(Tf Ty)

where 7;= Ar=the sampling interval, equation 4.4 can be expressed as an
algorithm of the form

siny=s(n—1)+e(n) (4.5)
m(n)=Kpe(n) + Kis(n} + Kale(n) ~ e(n — 1)] -

where s(n) = the sum of the errors taken over the interval 0 to nT;.
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4.2 IMPLEMENTATION OF THE BASIC PID ALGORITHM

Writing the code to implement the algorithm given in equation 4.5 is a simple job.
The basic code statements are:

sn :=sn+en;
mn :=Kp*en+|<i*sn+l(d*(en—en0ld);
enOld :=en;

These statements can be incorporated into a procedure such as:

PROCEDURE PIDControl(en: REAL; VAR mn: REAL);
BEGIN

sn 1=sn+en;

mn :=Kp*en+Ki*sn+Kd*(en-en0ld);

endld :=en;
END PIDControl;

If we assume that the plant output is obtained by using an ADC to sample and
convert the output signal, that the actuator control signal is output through a DAC
to the actuator and that procedures APC and DAL are available to read the ADC
and to send vatues to the DAC, then we can write a PID control moduie as shown
in Example 4.1. '

EXAMPLE 4.1

MODULE PIDcontroiler;
(*
Title : PIDcontroller
File : PIDCONTR
Last Edit : 17 Jan 1992
Author : §.Bennett
*)
(*
This is the ideal controller. It ignores atl
practical problems and all timing problems.
*)
FROM IOmodule IMPORT ADC, DAC;
FROM 10 IMPORT KeyPressed;
CONST
Kpvalue=1.0;
Kivalue=0.8;
¥dvatue=0.3;
VAR
sn,Kp,Xi,Kd,en,en0ld,mn : REAL;
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PROCEDURE PIDControl{en: REAL; VAR mn: REAL);

BEGIN
SN (= sn+en;
mn s = Kp*en+xi'5n+Kd*(en-enOld);

enOld := en;
END PIDControl;

BEGIN (* Main program *}
sn:=0.0; (" initialise integral action term *)
Kp:=KpValue; I
Ki:=Kivalue;
Kd:=KdValue;
enOld:=ADC();
REPEAT
en:=ADC();
PIDControl(en, mn);
DAC(mn);
UNTIL KeyPressed();
END PIDcontroller.

The above program ignores several important practical problems, for example it
does not take into account the need to synchronise the calculation of PIDCont rol
with ‘real’ time. As written the program makes the sampling interval T dependent
on the speed of operation of the computer on which the program is run, For correct
operation some means of fixing the sampling interval is required since the
coefficients K; and K, are both calculated assuming a specific value of sampling
interval. It is of course possible to change the algorithm to include the sampling
interval T, as a variable.
Other omissions include:

® bumpless transfer — that is, smooth transfer from manual to automatic
control;
® actuator limiting and other forms of saturation — these lead to integral
wind-up; and
® measurement and process noise,
The program also has the controller parameters built in as program constants; hence
modification of the controller settings requires recompilation of the program.

In the next sections we examine some ways of modifying the program to deal
with these problems and look at improved forms of the basic algorithm.

4.3 SYNCHRONISATION OF THE CONTROL LOOP

A typical feature of real-time programs is that once they have been started they run
continuously until some external event occurs to stop them. We will emphasise this
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by using the infinite loop programming construct LOOP...END with an EXIT
statement to indicate the terminating condition. The general form of a control
program will be:

MODULE RealTimeControl;
(* declarations *)
BEGIN
(* jnitialisation ™)
LOOP
(* synchronisation ™)
(* get plant data *)
(* control calculation
(* €XIT condition check *)
(* put control data to plant *)
END (* Loop *);
END RealTimeControl.

*)

Synchronisation can be achieved by several different means such as:

e polling;

e external interrupt signals;
# Dballast coding; and

e real-time clock signals.

Two methods, poliing and external interrupt signals, were discussed in Chapter 3
(section 3.6). They rely on the plant (or some other unit external to the computer)
sending a signal to indicate that it is time for a control action to take place. This
signal must be sent at the sampling interval T chosen when starting the controiler
since, as can be seen from equation 4.4, the algorithm is correct only for a particular
sampling rate. The difference between the two methods is that in polling the control
computer repeatedly reads a value — normally a logical signal — whereas with an
external interrupt the computer can be performing other computations; the action
of the interrupt is to tell the computer to suspend whatever it is doing and carry out
the control task.

4.3.1 Polling
We can write a synchronisation procedure which uses polling as follows:

PROCEDURE Synchronisation;
(* Use of polling for synchronisation *)
+ BEGIN
LOOP
WHILE NOT (Digin(SampleTime)) DO
(* wait until time *)
END (* while *);
END (* Loop *);
END Synchronisation;
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In the above exampie it is assumed that a Boolean function, Digintline), is
available which reads the appropriate logical signal, in this case SampleTi me,
from the plant interface: When the procedure Synchronisation is called the
computer waits in the WHILE...DO loop until the Digin(SampleTime)
function returns a value true — this wait is referred to as a busy wait since no other
computation can be carried out while the computer is waiting.

The polling method is simple to program and easy to design and use; however,
because of the busy wait its use is restricted to small dedicated systems. An
alternative method suitable for simple, dedicated, control systems is to use ballast
coding (Hine and Burbridge, 1979).

4.3.2 Ballast Code

The idea of ballast coding is to make the loop time completely dependent on the
internal operations of the computer and independent of external timing or
synchronisation signals. The method involves finding the time taken to execute each
possible path in the control loop of the program and adding code statements —
ballast code — to make the execution time for each path equal. If necessary a further
block of ballast code is added at the end to make the total execution time for the
control loop equal to some desired execution time.

The method can be illustrated by considering the program structure shown in
Figure 4.2. For each path (for example, 4, A1, A1.1) the computational time for
that particular path is calculated (or measured) and ballast code is added to each
so as to make the computational time for each path equal. For path 4, A1, Al.1
ballast Al.1 is added. Further ballast code can be added to make the total
computational time equal to the sample interval; this is shown as Ballast B,

The method minimises the amount of external hardware required and is thus
cost effective for systems that are to be produced in large quantities. An obvious
problem is that any change in the code results in the need to adjust the ballast code
segments. Also the technique cannot be used if interrupts are being used (why not?)
and the code will have to be modified if the CPU clock rate is changed. As is the
case with polling, the use of the ballast code technique prevents the computer system
being used to carry out any other calculations while it is waiting to carry out the next
control calculation.

4.3.3 External Interrupt

For small systems with a limited number of DDC loops (or other actions that require
synchronisation), use of an external interrupt for synchronisation can be very
effective. The control loop is written as an interrupt which is associated with a
particular interrupt line, The interrupt line is activated by some external device —
typically a clock. While the control loop is waiting to be activated other programs



Synchronisation of the Control Loop

121

Al

Al

Ballast
Al.l

can be running. This form of operation is typicall
background operation and is described in-more det

4.3.4 Real-time Clock

The most general solution to the problem of timing a control loop is p

Ballast
Al2

Y
Ballast
B

|

Ballast
A2

T

|

Figure 4.2 Ballast coding.

y referred to as a foreground-—
ail later in this chapter.

rovided by

adding a real-time clock to the computer system. Provision of a real-time clock



122 DODC Algorithms and Their Implementation

involves .he addition of some hardware components and some software. The IBM
PC (and compatibles) as part of the BIOS (Basic Input Qutput System) provides a
clock. The Module Timer, Example 4.2, shows how, using Modula-2, the clock
values can be accessed. The time is returned in terms of the number of ticks of the
clock, a tick being the resolution of the clock, that is the smallest interval of time
the clock can measure.

EXAMPLE 4.2

DEFINITION MODULE Timer;
(*
Returns the value of the '"TICK '"clock.
*)
PROCEDURE Ticks():LONGCARD;
END Timer,
IMPLEMENTATION MODULE Timer;
(!
Returns the value of the 'TICK' clock.
*)
VAR
TimerLow [0:046CH] : CARDINAL;
TimerHigh{O:DkéEH]: CARDINAL;
Time [Q:046CH] : LONGCARD;
PROCEDURE LouTicks():CARDINAL;
(*
Reads TIMER_LOW from the ROM BIOS clock.
(Incremented every 1/18.2 seconds. )
*)
BEGIN
RETURN TimerLcow
END LowTicks;
PROCEDURE HighTicks(}:CARDINAL;
(*
Reads TIMER_HIGH from the ROM BIOS clock.
(Incremented every hour.)
*)
BEGIN
RETURN TimerHigh
END HighTicks;
PROCEDURE Ticks():LONGCARD;
(*
Reads the complete ROM BIOS clock. (18.2 ticks/second.)
*)
BEGIN
RETURN Time
END Ticks;
END Timer.
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The code fragment, Example 4.3, illustrates how the timer module can be used
to synchronise the control loop calculations to real time.

EXAMPLE 4.3

FROM Timer IMPORT Ticks;
CONST
sT=20; (* time between samples in 'TICKS' ™)
VAR
time, NextSampleTime : LONGCARD;
BEGIN (* Mainprogram?®)
NextSampleTime :=Ticks()+sT;
time:=Ticks()+sT;
LOGP
WHILE Ticks() <NextSampieTime Do
(* nothing *?
END; (* of WHILE ™)
time:=Ticks();
(* get plant input *)
(* control calculation
(* put plant cutput *?
NextSampleTime := time+sT;
1F KeyPressed () THEN EXIT;
END (* IF *);
END; (* of LOOP *)

)

This example uses a busy wait in the control loop — the WHILE ... DO statement
— and during this wait the clock is read continually and ciiecked against the time
for the next sample. Immediately on exiting from the wait the current value of time
is saved in the variable t ime. At the end of the control calculation the time for the
next sample is updated by adding the sample interval to the variable time. The
interval between successive runs of the control loop is thus independent of the time
taken in the control calculation. It is good practice to check that at the end of the
control loop the value of NextSampleTime is later than the current time and to
provide an error indication if this is not the case. A suitable check would be to add
the code

IF NextSampleTime < Ticks () THEN RaiseError(timing)
END (* IF *);

Two examples of PID controllers are given below. You should study both of
them carefully and how the method of synchronisation for each differs.
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EXAMPLE 4.4

MODULE PIDcon2A;
(*
Titie i PIDcontroller Example
File : PIDcon2A
*)
(*
This example illustrates a method for synchreonising the pPiD
control calculation but ignores other practical problems.
*
FROMIOmoduleIMPORTADC,DAC:
FROM Timer IMPORT Ticks;
FROM 10 IMPORT KeyPressed;
FROM Error IMPORT RaiseError;
CONST
Kpvalue=1.0;
Kivalue=0.3;
Kdvalue=0,3;
sT=20; (* time between samples in "TICKS' *)
VAR
sn,Kp,Ki,Kd,en,ent0id,mn : REAL;
time, NextSampleTime : LONGCARD;

BEGIN (* Mainprogram *)
sn:=0.0; (* initialise integrate action term *)
Kp:=KpValue;
Ki:=Kivalue;
Kd:=KdvValue;
en:=ADC();
NextSampleTime := Ticks{()+sT;
time:=Ticks()+sT;
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1LOCP
WHILE Ticks() <NextSampleTime DO
¢* nothing ™
END; (* of WHILE ™)
time:=Ticks{();
enfld:=en;
en:=ADC();
snissnten;
mn:=Kp*en+Ki*sn+Kd*(en-enCid);
pAC(mn);
NextSampleTime := time+sT;
IF NextSampleTime<Ticks() THEN
RaiseError{timing);
END (* IF ™);
IF KeyPressed () THEN EXIT;
END (* TF *);
END; (* of LOOP ™}
END PIDcon2A.

EXAMPLE 4.5

MODULE PIDcon2B;
(*
Title : PIDcontroller
File : PIDCONZB
*)
(*
This is an alternative way of providing
synchronisation to that given in MODULE PIDconZA.
*)
FROM ICmodutie IMPORT ADC, DAC;
FROM Timer IMPORT Ticks;
FROM 10 IMPORT KeyPressed;
FROM Error IMPORT RaiseError;
CONST
KpValue=1.0;
Kivalue=0.8;
Kdvalue=0.3;
sT=20;(*timebetueensamplesin'TICKS'*)
VAR
sn,Kp,Ki, Kd,en,en0Old,mn : REAL;
time:LONGCARD;
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BEGIN (* Main program *)
sn:=0.0; (* initialise integrate action term *)
Kp:=KpVaiue;
Ki:=KiValue;
Kd:=KdValue;

en:=ADC();
time:=Ticks()+sT;
LOOP

WHILE Ticks() <time DO
(* naothing *)
END; (" of WHILE *)
time:=time+sT;
enlld:=en;
en:=ADC();
sn:=sn+en;
mn:=Kp*en+Ki*sn+Kd*(en-en0ld);
PAC(mn);
IFTime<Ticks({) THEN
RaiseError(timing);
END (* IF *);
IF KeyPressed()THEN EXIT;
END (* IF *);
END; (* of LOOP *)
END PIDcon2B.

4.4 BUMPLESS TRANSFER

Equatior: 4.5 implies that in the steady state, with zero error, the controlled variable
m(n) is equal to the value of the integral term K;s(n). Ideally in the steady state with
zere error we would like the integral term 10 be zero, which would mean that m(n)
is also zero. In many applications the steady-state operating conditions require that
m(n) has some value other than zero. For example, a steam boiler may require the
fuel line valves to be half open. In the case of the hot-air blower described in
Chapter 1 a non-zero voltage has to be applied to the heater input for the heater
to provide heat output. Therefore the normal practice is to modify equation 4.5 by
adding a constant term (M) representing the value of the manipulated variable at
the steady-state operating point, giving

m(n)=Kpe(n)+ K:s(n) + Kg[e(n)—etn— D} + M (4.6)

The quantity M can be thought of as setting the operating point for the
controller. If it is omitted and integral action is present, the integral action term will
compensate for its omission but there will be difficulties in changing smoothly,
without disturbance to the plant, from manual to automatic control. There will also
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be the danger that on change-over, a large change (for example, in a valve position)
will be demanded. Plant operating requirements usually demand that manual/
automatic change-over be made in the so-called ‘bumpless’ manner. Bumpless
transfer can be achieved by several means.

4.4.1 Method 1 — Presat Change-over Value

The value of M is calculated for a given steady-state operating point and is inserted
either as a constant in the program or by the operator prior to the change-over from
manual to automatic mode. The transfer to automatic mode is made when the value
of the error is zero: at the time of change-over the integral term is set to zero and
the output m{n) equal to M. The problem. with this technique is obvious: the
predetermined value of M is correct only for one specified load. If the load is varying
it may not be possible or convenient to make the change-over at the predetermined
load value. If the error is not zero on change-over there will be a sudden change in
the value of the manipulated variable due to the proportional action.

4.4.2 Method 2 — Tracking of Operator Setting

During operation under operator control the manipulated variable (im) is set from
the operator’s control panel and the computer system keeps track of the value. This
may be done cither by obtaining an analog or digital readout from the operator’s
control panel, or by reading the value of the input to the control actuator on the
plant. In both cases it may be necessary to convert and scale the reading obtained
to conform to the units being used for m inside the computer. At the point at which
change-over is made, the value of m is stored in a variable mc. Two methods of
transfer can be used:

1. M is not preset and change-over is made when the error {e)is zero; then
M=mc. Or
2. M is preset to a value appropriate for the nominal level and change-over is
made when the error is not zero. The integral action term needs to be set
to an initial value
s=mc—-Kyece— M

where ec = error value at change-over.

4.4.3 Method 3 — Velocity Algorithm

The PID algorithm given by equation 4.5 is often referred to as the positional
algorithm because it is used to calculate the absolute value of the actuator position.



128 DDC Algorithms and Their Implementation

An alternative form of the PID algorithm, the so-called velocity algorithm, is widely
used to provide automatic bumpless transfer. The velocity algorithm gives .the
change in the vaiue of the manipulated variable at each sample time rather than the
absolute value of the variable. In continucus terms it can be obtained by
differentiating equation 4.1, with respect to time, to give
dm(t) de(t) | dle(t)
=K +—e()+ T, 4.7
dt ”(dr T, fO+Ta =50 “.7)
The difference equation can be obtained either by applying backward differences to
equation 4.7 or by finding m(n) — m{n — 1) using equation 4.4 which gives

Am=mn)—mn—-1)

= Kp([e(n) —e(n— 1))+ 97;-{ e(n)+ % [e(n)—2e(n— 1)+ e(n - 2)])
(4.8)
Rearranging equation 4.8 gives

am(n)= Kp[(l + % +*7T:':)e(n) - (1 +2 %’)e(n -+ %’ e(n - 2)] (4.9)

Writing

K, =Kp(1 + TS/T,' + Td/T,)
K;=—(1 +2Td/T5)
Ki= Td/Ts

equation 4.9 becomes
Amn)=Kie(n)y+ Kze(n—1)+ Kie(n-2) 4.10)

which is easily programmed.

Because it outputs only a change in the controller position this algorithm
automatically provides bumpless transfer. However, if a large standing error exists
on change-over the response of the controller may be slow, particularly if the
integral action time is long, that is with a large value of T3.

4.4.4 Comparison of Position and Velocity Algorithms

Comparing the position algorithm (equation 4.5) and the velocity algorithm
(equation 4.]10) shows that the latter is simpler to program and is inherently safer
in that large changes in demanded actuator position are unlikely to occur,
Frequently the maximum value which m(n) can take is limited, thus ensuring that
sudden large changes, for example in valve position or motor speed, are avoided.
These sudden changes can occur if the measured signal is noisy or if the set point
is changed. A method of dealing with noisy measurements is to use a fourth-order
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difference algorithm to approximate defdt and this is explained in the next section.
The disturbance caused by set point changes can be reduced by modifying the
algorithm to use the set point r and the measured output ¢ rather than the error
signal e. .

In the standard algorithm, based on the use of error e, the value of the set point
appears in the derivative term and any change in value is differentiated; hence a
sudden step change can cause a large disturbance. If in equation 4.9 we let
e(n) =r —c(n) {note that r, the set point, is assumed to be constant), then the
equation becomes

Amin)= Kp([dn -1 —-c{r)] + % (r—c(nh

+TT£ [20(n—1)—c(n-2)—c(n)]) 4.1

5
Changes in the set point are then accommodated by simply changing the value of
the constant r.

The set point r appears only in the integral term and hence the controller must
always include integral action. For security of operation a check must be included
in the program to prevent the T/ T; parameter being set to zero or some very small
value. .

Disturbances can also be caused by on-line parameter changes since with a
digital algorithm a large parameter change can be introduced in a single step.
Consider the basic form of the PID algorithm

siny=s{n-1)+e(n)

m(n) = Kpe{n) + Kis(n} + Kale(n} —e(n—1)] 4.12)

If we make a change to the integral action time T; clearly, unless s(n) is zero, there
will be a step change in output since K, = K (Ts/T:). We can avoid this either by
limiting the rate at which a parameter changes or by altering the algorithm as shown
below:

s(m)y=stn—1) +en)TT:)

m(n) = Kpe(n) + Kps(n) + Kale(n) —e(n —1)] (4.13)

By writing the algorithm in this form the effects of making a change to 7; are much

reduced. Changes to K, and Ky cause much smaller disturbances unless the error is
large andjor the rate of change of error is large.

4.5 SATURATION AND INTEGRAL ACTION WIND-UP

In practical applications the value of the manipulated variable m(n) is limited by
physical constraints. A valve cannot be more than fully opened, or more than fully
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closed; a thyristor-controlled electric heater can supply only a given maximum
amount of heat and cannot supply negative heat. If the value of the manipulated
variable exceeds the maximum output of the control actuator effective feedback
control is lost: good plant design should ensure that this only occurs in unusual
conditions.

A simple example of what can happen is provided by considering a building
heating system. The capacity of such a system is usually chosen to cope with an
average winter: if extreme low temperature and high winds coincide, the system,
even when operating at maximum capacity, will not be able to maintain the desired
temperature. Under these conditions a large standing error in temperature will exist.
If a PI controlier is used, then because there is a standing error, the integral term
will continue to grow; that is, the value of s(n) in equation 4.5 will be increased
at each sample time. Consequently the value of the manipulated variable will
increase and the demanded heat output will continually increase, but since this
will already be a maximum, the demand cannot be met. The changes are shown in
Figure 4.3, If the wind drops and the outside temperature increases, then the
building temperature will increase and eventually reach the desired temperature.
The value of s{n), the integral term, will, however, still be large, since it will not
be reduced until the building temperature exceeds the demanded temperature. As
a consequence the integral term will continue to keep the demanded heat output
at its maximum value even though the building temperature is now higher than
desired.

The effect is called integral wind-up or integral saturation and results in the
controller having a poor response when it comes out of a constrained condition.
_Many techniques have been developed for dealing with the problems of integral
wind-up and the main ones are:

fixed limits on integral term;
stop summation on saturation;
integral subtraction;

use of velocity algorithm; and
analytical method.

4.5.1 Fixed Limits

A maximum and minimum value for the integral summation is fixed and if
the term exceeds this value it is reset to the maximum Of minimum as appro-
priate. The value often chosen is the maximum/minimum value of the manipu-
lated variable; thus if Smax = Mmax @Nd Smin = Mmin then the coding in the
PROCEDURE PIDContral in Example 4.1 could be modified as shown in
Example 4.6.
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EXAMPLE 4.6
PROCEDURE PIDControl (en: REAL; VAR mn: REAL);
sn t=sn+en; (* integrat summation *)
IF sn>smax THEN
SN r=smax
ELSE IF sn<smin THEN

5nr=smin;
END (* ELSE IF *)
END (* IF ™)
mno:=Kp*en+Ki*sn+Kd*(en-en0ld);
en0ld :=en;
END PIDContral;

4.5.2 Stop Summation

In this method the value of the integrator sum is frozen when the control actuator
saturates and the integrator value remains constant while the actuator is in
saturation. The scheme can be implemented either by freezing the summation term’
when the manipulated variable falls outside the range Mmin tO Mmay OF by the use
of a digital input signal from the actuator which indicates that it is at a limit.

Both of the above methods stop the integral term building up to large values
during saturation but both have the disadvantage that the value of the integral term,
when the system emerges from saturation, does not relate to the dynamics of the
plant under full power. Consequently the controller offset (provided by the integral
term) lags behind the offsets required by the plant and load as the set point is
reached,

The stop summation technique gives a better response if the integral term is
unfrozen once the sign of the error changes. The sign of the error will change before
the actuator comes out of saturation. Assume that a positive error drives the
actuator towards its upper limit; then the behaviour required is:

Actuator Error Integral summation
upper limit + stopped

upper limit — active

normal + active

normal - active

lower limit + active

lower limit - stoppéd
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The procedure becomes

PROCEDURE PIDControl (en: REAL; VAR mn: REAL);

StopSummation:={((mn >mnmax) AND (en>0.0)2
OR ({mn<mnmin) AND (en < 0.0));

IF NOT (StopSummation) THEN sn:=sn+en;
END (* IF *)
mn:=Kp*en+Ki*sn+Kd*(en-en0ld);
enOld:=en;

END PIDLontrot;

4.5.3 Integral Subtraction

The idea behind this method is that the integral value is decreased by an amount
proportional to the difference between the calculated value of the manipulated
variable and the maximum value allowable. The integral summation expression

s(n)=s{n— D +e(n)
is replaced by
s(ny=s(n—1) — Kim(n) — Mmnal +e(n)

The integral sum is thus decreased by the excess actuation and increased by the
error. The rate of decrease is dependent on the choice of the parameter K if it is
not properly chosen then a continual saturation/desaturation osctllation can occur.

The method can be modified to stop the addition of the error part during
saturation if a logic signal from the actuator indicating saturation or no saturation
is available. In this case the value of the integral sum begins to decrease as soon as
the actuator enters saturation and continues to decrease until it comes out of
saturation, at which point integral summation begins again. The benefit of this
method is that the system comes out of saturation as quickly as possible; there is,
however, no attempt to match the integral term to the requirements of the plant and
the value of K must be chosen by experience rather than by reference to the plant
characteristics. ‘

4.5.4 Velocity Algorithm

It is often stated that integral wind-up can be avoided by the use of the velocity
algorithm since the integral action is obtained by a summation of the increments in
the output device, either at the actuator or at a device connected to the actuator,
and it is this device which is subject to limiting. There is therefore an automatic
integral limit which prevents a build-up of error, However, as soon as the error
changes sign the actuator will come off its limit and hence at desaturation the
integral term is lost.



DDC Algorithms and Their Implementation

134

wtod 129
———————eeliy

| 4
12]|05U0))

WAISAS |0U0D BpRISED ¥ 2inbiyg

q

12[[0NN07)

Juawarmseaw _|—"

armeradwoy

) S

/

13}3UMOY

1a3ueyoxa
1oy

Weals



Saturation and Integral Action Wind-up 135

When controllers are cascaded it must not be assumed that the use of the
velocity algorithm will prevent integral wind-up. In the system shown in Figure 4.4,
controllers A and B are assumed to use the velocity algorithm and both are assumed
to employ PI control. Controller A is used to adjust the steam flow to a heat
exchanger in order to maintain a particular water temperature in the hot-water
supply used to heat a room. The demanded water temperature is set by controller
B. Suppose on a cold day controller B demands a water temperature of 60°C but
the best the heat exchanger can do is to provide water at 55°C. The effect will be
that the room temperature will remain too low and the integral sum will begin to
grow and hence the set point of the controller will continually be increased until it
reaches its maximum limit. If the steam valve is fully open there is no action con-
troller A can take. If now the external temperature increases there will be a delay,
during which the room temperature might rise well above the desired temperature,
before the set point of controller A is reduced to correct the overshoot. In order to
avoid this the master controller must know when the subsidiary loop is at a limit.

4.5.5 Analytical Approach

This method has been developed by Thomas, Sandoz and Thomson (1983) and it
uses knowledge of the plant to set the integral sum term approximately to the correct
value at the point of desaturation such that the normal linear response from steady
state is achieved. This is shown in Figure 4.5. For a system of the form shown in
Figure 4.6, that is a first-order plant with a PI controller, the integral sum at the
time r when the system desaturates is given by

()= K:Kc {c(r) + sKpL ()] (@.14)
If it is assumed that the load L(s) is constant, or slowly varying, then
L(s}y = Lofs (4.15)
and hence equation 4.14 becomes
1
I(r)= XK. [e(r) + KpLo] (4.16)

When the control actuator desaturates the integral value should be set to the value
which it would have been holding in the steady statc at ¢{7) and then the remaining
step e(7) will follow as in the linear case. The value of ¢{r) is not known since the
time, 7, of desaturation is not known; however, if prior 1o the control calculation,
the integral term f(r) is set using equation 4,16 above with the c(7) for t < 7, then
at the instant of desaturation 7(¢) = [(7). Hf the actuator is not in saturation then
the normal integration of error takes place. This scheme is shown in the program
segment in Example 4.7 where the REAL variables Load and KPXC are used for
KpLo and KK, respectively.
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e(t) = linear response
forr =z

P —— e ———— ey — ——— — —— —
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t=0 Saturated t=1 Linear response
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Figure 4.5 Saturated and linear regions of first-order responses.
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Figure 4.6 PI control of first-order plant.
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EXAMPLE 4.7

LOOP
cn :=ADC; (* ADC returns value of plant output
*3
en :=c¢n-setpoint;
IF mn>mnmax THEN
sn :={cn+load)/KPKC

ELSE

en :=sn +en; (* integral summaticn *)
END (* 1F *)
mn :=Kp*en+Ki*sn+Kd*(en-en0ld);
DAC{mn);

enQld :=en;
END (* LOOP ™)

4,6 TUNING

The first papers on methods of tuning analog three-term controliers were those of
1.G. Ziegler and N.B. Nichols which were published in 1942 and 1543. Since then
there has been extensive work on extending and developing tuning methods. In
recent years direct tuning by plant engineers has largely been replaced by autotuning
controllers. The basic tuning methods are covered in most texts on control
engineering: for adaptation to digital implementations se¢ for example Leigh (1992),
Astrom and Wittenmark (1984), Takahashi et al. (1970). All of the methods are
based on simple plant measurements and on the assumption that the plant can be
modelled by the transfer function
ke L*

G(s) = 0 +s575) (4.17)
The value of the parameters in the above plant model can be obtained from a simple
open-loop step response as shown in Figure 4.7.

For the analog system the tuning problem is, given R, L or T,, to choose Kp,
K, K4 so as to minimise (or maximise) some performance criteria (for example, the
integral of absolute error, IAE).

The standard Ziegler—Nichols rules are:

Kp Tg' Td
P 1/RL
PI 0.9/RL 3L

PID 1.2/RL 2L 0.5L
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Plant
output

plant output

Plant gain K = -
step input

———a Time

Figure 4.7 Process reaction curve.

The alternative method is to close the feedback loop and use a proportional
controller. The gain of the controller is turned up until the system just begins to
oscillate with a steady amplitude. The tuning parameters are then calculated in terms
of the gain K, and the period of the oscillation Tp. The settings are

K, T; Ta
P 0.5 Kn
Pl 0.45 K., T,f1.2
PID 0.6 K Tof2 Tp/8

The digital implementation of the three-term controller involves additional
variables: ¢ the unit of quantisation and 7, the sampling time; hence the
performance function becomes

.]=f(q, Ts; Kp; Ki: Kdy L» T.U)

The size of the quantisation is not normally a problem in industrial process control
since the control computation can be done using either real numbers or fixed point
arithmetic. It becomes greater in, for example, aircraft controls and weapons
systems where time constants are shorter and, in order to obtain the necessary
computational speed, limited wordlength arithmetic has to be used. The problems
are discussed extensively by Katz (1981) and Leigh (1992); J.B. Knowles has devised
a design method which takes into account quantisation and sample rates (see
Bennett and Linkens, 1984).

Smith (1972) has suggested that when using tuning tables based on L values
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{L+T,2) should be used rather than L, in order to take into account the delay
caused by sampling. He also notes that as the value of Ti/2 approaches the dead
time, L, the performance deteriorates.

If the PID algorithm is expressed in the form given in equation 4.10 but with

K,‘=KCTSIT1 and Kd=Kch/T5

then Takahashi et al. (1970) give the following rule for tuning the parameters:

1.2 1
Ky ——o———
PTRIL+Ts) 2K
0.67;
Ki=———"

R(L+T2)°
0.5 0.6
Ki=-—2- -2
= ®7. ° RT.

When 7T, =0 the above rule converges to the standard Ziegler—Nichols result
K,=1.2[RL, 1/T:=0.5(L, Tau= 0.5L

It should be noted that the quality of the control deteriorates when Ty increases
relative to the dead time, L, and that the tuning rule fails when L{ T is very small.

4.7 CHOICE OF SAMPLING INTERVAL

Intuitively we might assume that if we decrease the sampling interval then as Ts
tends to zero the system will asymptotically converge towards the performance of
the equivalent analog system. However, this is not the case since the digital
computation has a finite resolution. Thus as the sample interval decreases the change
between successive values becomes less than the resolution of the system and hence
information is lost. The interaction between sampling interval and arithmetic
resolution is complex and a detailed analysis can be found in Katz (1981) and in
williamson (1991); for a shorter summary of the effects see Leigh (1992).

Conversely increasing the sampling interval can result in destabilising the
feedback loop, in loss of information (the sampling effect), and in a loss of accuracy
of the control algorithm. Various empirical rules have been given for choosing a
sample interval, some of which are listed below:

1. Dominant plant time constant: If ‘the dominant plant time constant is Ty
then choose T such that

T, < Tp/10

This is a widely used rule but as Leigh points out it is dangerous under
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conditions where a high closed-loop performance is forced on a system with
a low open-loop performance.

2. Assumption of Ziegler—Nichols plant model: If the plant model is as given
in equation 4,17 then the following suggestions are given in the literature:
(a) general 0.05 < TfL <03,

(b) large dead time L set T, =2,
(c) small dead time L set T, =6,
(d) choose sampling interval such that 5§ < Tal Ts < 10,

3. Closed-loop performance requirements: [f the closed-loop system is
required to have either a settling time of 7%, or a natural frequency of w,
then choose T, such that
(a) T < Tuf10, .

(b) ws > 10w, where w, = 2nfT,.

4.8 PLANT INPUT AND OUTPUT

So far we have assumed that the input signal obtained from the plant and used to
calculate the error signal e is a clean signal that is in the correct form required for
the control algorithm. In practice this is not the case. The signal may be a noisy
signal, it may require the application of a calibration factor and it may need scaling.
Similarly we have assumed that the output from the control algorithm can be sent
directly to the actuator and again this is not generally the case: the value may need
scaling and converting to a different form of output, for example in process control
applications many actuators require a pulse of varying duration to operate them
rather than a signal of varying amplitude.

A way of dealing with the practical details of input and output from the plant
is to divide the software into segments as shown in Figure 4.8. The plant input
segment is visualised as providing a plant image that is a filtered, scaled and
calibrated version of the plant input signal. The control algorithm uses this and
calculates the actuator command signal which it places in the output image. The
plant output module converts this into a form required to drive the real actuator on
the plant.

4.8.1 Noise

In an analog control system, a small amount of high-frequency noise on the
measured signal usually does not cause any problems since the dynamic components
in the system act as low-pass filters and attenuate the noise. If sampling is involved,
high-frequency noise may produce a low-frequency disturbance due to folding or
aliasing (see, for example, Leigh, 1992; Kuo, 1980). The low-frequency disturbance
has the same sample amplitude as the original noise and its frequency is the
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Figure 4.8 Basic division control software.

difference between the original noise frequency and a multiple of the sampling
interval. To reduce this effect the measurement signal must be filtered using an
analog filter before it is sampled.

For many industrial applications a simple first-order filter

Grls) = 1+ Tys
is satisfactory. The choice of Ty= Tf2 (where T; is the sampling time for the
controller) will reduce the aliasing effect by about 90% for white noise. For
example, if the bandwidth of the system being controlled is 0 to 2 Hz then from the
Nyquist sampling theory we need to sample at a minimum frequency of 4 Hz if we
are to be able to reconstruct the signal. In practice we would choose to sample at
ten times the bandwidth and hence need to sample at 20 Hz which corresponds to
a sampling interval T; of 0.05 s. To remove high-frequency noise prior to sampling
we need to use a filter with a time constant of Ty= 7,2, that is 0.025 s.

Where Tis small, analog filters can easily be constructed from passive elements.
If Tyis greater than a few seconds then combined digital and analog filtering is used.
The arrangement is illustrated in Figure 4.9 and the analog filter is used to remove
the high-frequency noise and hence reduce the required sampling rate.
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Figure 4.9 General control system with filtering,

For a first-order lag filter

dx
Tr—+x=u
T al
with input u, output x and filter sampling interval Ty, the numerical approximation
is

x(n+ 1) = [1 —exp(— Tp/ Ty)hx(n) + exp( — Ty Tr)ue(n)
Introducing a = exp( — Ty Ty} and applying a backwards time shift gives
x(m)=(—-a)x(n—1)+auin-=1)

It can be seen that if @=1 there is no smoothing and if #=0 the current
measurement (input) is not used.

The sample interval Ty, for the input to the digital filter has to be made smaller
than the time constant T; of the filter and hence several samples of the measurement
signal are taken for each output of the controller. The time constants of analog pre-
filters are usually small and do not significantly degrade the overall performance.
Excessively large values of T7 should be avoided.

4.8.2 Actuator Control

In designing and implementing real controllers the characteristics of the actuators
used to control the process are important. The normal practice is to take the value
of the manipulated variable (m(n) or Am(n)) as the input to an actuator control
medule as shown in Figure 4.10. In some instances there will be local feedback of
the actuator position as shown by the dotted line in Figure 4.10. The advantage of
this approach is that the basic controller and the detailed control of the actuator are
separated. If the actuator is modified or changed then only the actuator controller
module is affected.
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Figure 4.10 Actuator control.

4.8.3 Computational Delay

Analog-to-digital conversions, all computations in the computer — digital filtering,
calculation of the control value — and digital-to-analog conversion all take a finite
amount of time. There is thus a time difference — the computational delay — between
sampling the plant output and changing the value of the actuator. The value of this
delay depends on the computations carried out, on the processor and inputfoutput
speed of the computer and on the order in which certain operations are done.
Intuitively most people will order the digital controller calculations as follows:

1 read plant input data
2 calculate control output ’
3 gend output to actuator

if the kth sample of the plant input is measured at some time r{k) then the kth
sample of the actuator output is sent out at some time {(k}+#h where A is the
computational delay time (note & < T5). In other words a plant measurement c? (k)
gives rise to an output u{t(k) + hl. In general A will be variable as it will depend
partially on the data values. If the calculations are ordered in this way then # is made
as small as possible by performing as few operations as possible between getting the
plant input and producing the output.-
An alternative way of ordering the computations is as follows:

1 send to plant the control value for sample interval (k=12
? read plant input data for sample interval kK
T calculate control output for kth sample interval.

This approach produces a constant computational delay equal to the sample
interval T,. The advantages are that only statements 1 and 2 above need to be tightly
synchronised to the real-time clock; statement 3, the control calculation, can be
done at any time providing that the calculation is completed within the sample
interval 7. and that the computational delay is constant. Whichever approach is
used it is normal to take the computational delay into account by including the delay
h or T, as part of the plant model.
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Astrom and Wittenmark (1984) suggest that when using the second method you
should order the operations as

t read plant input data for sample interval k
2send toplant the control value for sample interval (k-1)
3 calculate controt Output for kth sample interval

$0 as to avoid the risk of electrical cross-coupling. If you do this you should split
the processing of the input data so that only the actual read operations are carried
out before you do the output to the actuator; any linearisation or other operations
on the input data should be done after sending the previous control value to the
actuator.

4.9 IMPROVED FORMS OF ALGORITHM FOR INTEGRAL AND
DERIVATIVE CALCULATION

The positional and velocity algorithms considered so far use first- and second-order
differences respectively to compute the derivative terms. Since differentiation or its
numerical equivalent is a ‘roughening’ process — it accentuates noise and data errors
= some form of smoothing, that is filtering, is required, Smoothing can be obtained
by using a difference technique which averages the value over several samples, One
such technique which has been used is the tour-point central difference method
(Bibbero, 1977; Takahashi er al., 1970). This gives

de_de 1 D= 3e(n—2) - e(n
E_TJ_M} [e(n) +3e(n— 1)~ 3e(n 2) - e(n-13)) (4.18)

Substituting for TafTi[e(n)—e(n—1)] in equation 4.4 gives

m(n) :Kp(g% [e(n) +3e(n—1)-3e(n -2)-e(n-13)

i k=1

+e(n)+? Z”]e(k)) (4.19)

The position algorithm using the above technique for the derivative term is thus

S(y=s5tk — 1) + e(k)

m{k) =pie(k) + pretk - 1) — pre(k - 2) —paelk — 3) + pas(k) (4.20)

where

p1=1+K,T4f6T,
p2=1+K,T42T,
=1+ Kple6Ts
p4 = 1 + KpTd/Tj
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Improvements can also be made to the accuracy of the integration calculation
by using the trapezoidal rule instead of the rectangular rule. If this is done, equation
4.4 can be written as

T. & efl)+etk—1N  Td o
T.-’El — )+ T [e(n)—e(n 1)]] (4.21)

and in velocity algorithm form

Am(n):Kp'[(1+ 7 +Z'L’)e(n}+(—£’——2—Til—l)e(n—l)

mn) = K,,'[e(n) + (

2T T 2T T

$

T -
+ T ein 2)] (4.22)

If this is compared with the velocity algorithm using rectangular integration we find
that

Kp=K,'(1 - T2T,")
T:.=T,"- T2
Ta=2T' T [QT = T5)

Hence if the appropriate values for the coefficients are used the form of the two
algorithms is identical.

4.10 IMPLEMENTATION OF CONTROLLER DESIGNS BASED ON
PLANT MODELS

In the early days of computer control one of the justifications for using digital
control instead of analog control was the ease with which more complex control
algorithms could be introduced. In particular control algori+hms could be designed
on the basis of accurate plant models instead of relying cn the Ziegler—Nichols
assumption that the plant could be modelled as a first-order lag and a time delay.
The performance of the more complex algorithms does not always, in practice,
match that suggested by the theory. Leigh (1992, p. 185) summarises the position
as follows:

1. PID algorithms perform surprisingly well in practice. They are robust and
difficult to improve on significantly on a day-to-day basis unless very
considerable effort is expended. |

2 Feedforward and cascade algorithms perform well in those situations for
which they were designed.

3. More complex algorithms tend to lose their supposed advantages once
process parameters drift or noise begins to affect measurements.

4, In general, the use of a long sampling interval greatly increases the
sensitivity of a control loop to process parameter drift. Complex algorithms
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tend to use longer sampling intervals and hence are prone to parameter drift
and noisy measurement problems.

The use of detailed plant models allows a wide variety of methods to be used
in the design of the controller (see, for example, Astrom and Wittenmark, 1984;
Franklin and Powell, 1980; Leigh, 1992; Katz, 1981; Kuo, 1980). Use of such
methods gives rise to two types of representation for the controller:

® state-space representation of the difference equations; and
1

e (ransfer function in z7 .

I the controller is in difference equation form it may be programmed directly;
if it 1s given as a transfer function it has to be realised, that is converted either into
an electronic (or other hardware) circuit or into a computer algorithm. There are
four techniques for realisation:

direct method 1:
direct method 2:
cascade; and
parallel.

In terms of computer algorithms it can be shown that for a given quantisation
limit {that is, wordlength) the cascade and parallel methods give algorithms in which
the numerical errors are smaller than the errors in the algorithms produced by the
two direct methods; for details see for example Katz (1981}, Leigh (1992). In the next
sections we deal briefly with the representation of the PID algorithm using the z-
transform notation and with realisation approaches. If you do not have any control
systems background you may wish to omit these sections and turn directly to section
4.11. If you want to try reading these sections but the z-transform is unfamiliar to
vou, you can for the purposes below treat z7' as a delay operator. This means that
writing ez ' implies the value of e at the previous sampling interval. Hence

M(Z)=(a+ bz ' +cz ?)E(2)

implies that, in the time domain, at the nth sample interval
mn)=aen)+ be(n— 1)+ celn —2)

or
mnT)y=aenT)+ be[{(n-1)T] +ce[{(n—-2)T]

where T is the sample interval.

4.10.1 The PID Controller in Z-transform Form

The PiD controller can be expressed as a transfer function in z, Consider equation
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4.4 and let d= T4/ Ts and g= T Ti. Then
"
m(n)=K,,(e(n)+g E e(k)+dle(n)—eln— 1)]) (4.23)
k=1

Since D(z) = M2}/ E(2), D(z) can be found by taking the z-transform of the right-
hand side of equation 4.23 term by term to give

D(z)=Kp(l +z—g_—z—]+d—dz") (4.24)

Equation 4.24 represents the parallel realisation of the PID controller and is
shown in block form in Figure 4.11. Rewriting Kpgzf{z — 1) as Kpgzf(l — z71) the
algorithm becomes

x1(i) = Kx(1 + d)eli)
x2 (i) = Kpgeli) +x2(i - 1)
x3(i) = — Kpde(i — 1)
m(i)=x1(i)+X2(i)+X3(i)

Substituting for d and g gives

x1(i) = Kp(1 + Taf Ts)eld)
xs (i) = Kp(Tof Ti)e(i) + x2(i — 1) 4.25)
X3 (I) = - Kp(Td/ T,)e(i - 1}

and it can be seen that equation 4.25 is the integral summation term which in
equation 4.5 was expressed in the form s(n) = s(n) + e(n). The algorithm from
equation 4.25 is

s(n)=Kie(n) +sn - 1)

m(n) = Kze(n) + Kze(n - 1)+ s(n)

where Ky = K,To Ti, K2 = Kp(h + To[T5) and K3= - K, 7' Ts.

Ko(1 +d)
+
E(z) K82 + M(z)
_—t
i +
- Kpdz !

Figure 4.11 z-transform function form of PID controller.
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Alternatively equation 4.24 can he rearranged to give

2
(l+g+d)z —(l+2d)z-d) (4.26)

D(Z)zKp( 2z- 1)

Dividing the numerator and denominator by z2 gives
2

_l —_
o+ 7T " +aazg
D =
( ) 1+b[ZAl

where
ao = K,(1 + g+ d)
o= —Kp(l +2d)
02==K}d
b= -1
Direct impiementation gives

m(i) = ape(i} + are(i — 1) + @me(i — 2)—bm@E-1) (4.27)

and substituting for ag, @\, a3, b, gives

. T, T ) 7. .
mu)=Kp[(l +f+f)e(‘)_ (l +2 F:’)e(a -1

+% e(i—2)+m(i - l)} {4.28)

which can easily be rearranged to give the velocity algorithm of equation 4.10.

4.10.2 Direct Method 1

The transfer function can be expressed as the ratio of two polynomials in z7 !

M(z) Lo a2/
—==p0 = - 4.2
E(2) (@)=~ £, b {4.29)

The transfer function in equation 4,29 is converted directly into the difference
equation

I "
mi= ) aei-;~ 2, bim_; (4.30)
i=0 =1
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EXAMPLE 4.8
Consider a system with the transfer function

M(z) _3+3627'+0.6277
E2) 1+40.1z7'-02772
Then by direct method 1 the computer algorithm is simply

D(z) (4.31)

m;=3e;+ 3.6e;_,+ 0.6e,.2— 0.1m;_, +0.2m;_2

4.10.3 Direct Method 2

Assuming as before that the transfer function can be expressed as in equation 4.29,
then in direct method 2 the difference equation is formulated by introducing an
auxiliary variable P(z) such that

m= 3 —d 4.32

P@) g}i a;z (4.32)
and

P(z) _ 1 (4.33)

E(z) 1+ZI%, bz~
From equations 4.32 and 4.33 two different equations are obtained:

"

;= E api-j (4.34)
j=0
and
bi=e — > bipi-; (4.35)
i=0

Using the example above the following algorithm is obtained:

pi=ei—0l1pi,+ 0.2pi-2
m;=3p;+3.6pi.1+0.6pi-2

4.10.4 Cascade Realisation

If the transfer function is expressed as the product of simple block elements of first
and second order as shown in Figure 4.12, then each element can be converted to
a difference equation using direct method 1 and the overall algorithm is the set of
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E(z) M(z)

—e{ D Dy |-w D, |- D, |—u=

Figure 4,12 Cascade realisation.

difference equations. Equation 4.31 when expressed in this form becomes

M) _ 31+27H(1+0.2z7")

Ew) - P9 0 rose Hi o4 D (4.36)
Hence

D=3

Dy=(1+z""

Dy=(1+02z7Y)
Dy=1/(1+0.5z7")
Ds=1/(1 -0.4z )

and letting x;, x2, x3, X4, and xs be the outputs of blocks Dy, D2, D3, Dy and Ds
respectively, then

x1() = 3e(i)
x)=xi()+x (-1}

X3 =x20)+02x(/-1)
xs(f) = x3(7) = 0.5%4 (i - 1)
Xs()=x3(0)+ 0.4xs(i— 1)

4.10.5 Parallel Realisation
If the transfer function is expressed in fractional form or is expanded into partial

fractions then it can be represented as shown in Figure 4.13. In this case each of the
transfer functions Dy, D», and D; is expressed in difference equation form using

D,
+
E(z) + M(z)
- Dz
+
- D, |

Figure 4,13 Parallel realisation.
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direct method 1 and the output is obtained by summing the outputs from each
block.
The partial fraction expansion of equation 4.31 is

1 7

M)

—_— D = — 3 it ‘+' .

T 10520 1-047 " @37
Hence Dy = — 3, Dy = — 1J(1 + 0.5z7 '), D3 =7{(1 - 0.4z ') and the algorithm is

xi(iy=—3e(l)

)= —eli)—0.5x2( - 1)
x3(i)=Te() +0.4x3(i - 1)

m{i}y = x1(i) + x2 (i} + x3()

4.10.6 Discretisation of Continuous Controllers

In this section we have assumed that a controiler designed using a plant model has
been designed- using discrete design techniques. However, controllers can be
designed using continuous system design methods and then discretised for digital
implementation.

The problem of discretisation is interesting and considerably more complex than
might at first be thought. There are a number of methods which can be used and
these are summarised below. However, none of them exactly preserve the
characteristics of the continuous system (time response, frequency response, pole-
zero locations). The main methods are: '

impulse invariant transform (z-transform);

impulse invariant transform withhold;

mapping of differentials;

bilinear (or Tustin) transform;

bilinear transform with frequency prewarping; and
mapping of poles and zeros (matched z-transform).

.O\'J\-h_DJN'—'

If it is not possible to give any firm indication of a best method for all
applications, however, in general the bilinear transform (4 or 5) and pole-zero
matching (6) give the closest approximations to the continuous system. Extensive
comparisons of the methods can be found in Astrom and Wittenmark (1984),
Franklin and Powell (1980), Leigh (1992) and Katz (1981).

4.11 SUMMARY

We have dealt at length with the implementation of a simple control algorithm in
order to illustrate some of the practical problems that have to be overcome in
imp'cmenting digital controllers. These problems apply whatever form of digital
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control algorithm is used. An important point to remember is that the more precise
and accurate the algorithm the more precisely must the timing requirements be met.
The standard PID algorithm, because it is not exactly matched to a particular plant,
remains well behaved when there are variations in the sampling interval, and when
samples are missed, algorithms that have been designed using discrete control design
techniques or discretised forms of continuous algorithms are not always so well
behaved and may be sensitive to small variations in sampling interval. For detailed
consideration of these issues see Franklin and Powell (1980), Katz (1981) and
Williamson (1991),

The reasons for the algorithm’s widespread use are that it requires very little
knowledge of the plant dynamics and the methods of determining the controller
parameters are well known and understood (Auslander and Sagues, 1981; Ahson,
1983; Cohen and Coon, 1953; Leigh, 1992; Smith, 1972; Stephanopoulos, 1985;
Takahashi et al., 1970; Ziegler and Nichols, 1942). If knowledge of the plant model
is available a wide variety of techniques can be used. The design can be carried out
using continuous system design methods to find G.(s) followed by discretisation of
Gc(s) to give G:(z)}. A number of methods of mapping G.(s) to G.(z) are available
(see section 4.10.6) but none give a controller G.(z) with exactly the same
characteristics of G.(s). Care must be used since, for example, discretisation using
first-order finite differences can easily result in changing a stable continuous-time
system into an unstable discrete-time system. An alternative is to design G.(z) on
the basis of a discrete-time model of the plant, G,(z), obtained either by
discretisation of the continuous-time model G,(s) or by determining Gp(z) directly.

In both cases we are concerned with how the controller is programmed, not with
how it is designed (information on design techniques can be found in Franklin and
Powell (1980), Iserman (1981), Katz (1981), Kuo (1980), Leigh (1992), and Smith
(1972)).

Digital microcontrollers for PID control are now widely available from process
instrument manufacturers; most of these units contain well-proven PID software
and most incorporate some form of self-tuning or expert-system-based automatic
tuning. Also available are software packages containing standard implementations
of commeon control algorithms,

In most computer control applications the implementation of the direct digital
control algorithms is a minor part of the system: the major efforts and compli-
cations arise in communicating with the plant, the operators, and other computers,
and in providing a safe system that can handle alarm and fault conditions. In the
rest of the book we turn our attention to the tools and techniques that help us in
building complex systems in a safe and secure way.

EXERCISES

4.1 Many personal computers have interval timers, that is they have a counter which can
be initialised and which is incremented (or decremented) at fixed intervals by an
interrupt signal. Using the technique shown in Example 4.2 write a program to output
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4.2

4.3

4.4

4.5

4.6

4.7

4.8

the ‘bell’ character (07H) at a fixed interval (for example, 2 seconds). I you have
access 10 a personal computer check the accuracy of the timing by using a stopwatch
to time a number of rings.

A person’s reaction time can be measured by sending, at random intervals, a character
to a VDU screen and asking the subject to press a key when the character appears.
If you have access to a personal computer or some other small computer write a
program to carry out such an experiment.

Modify the code of Example 4.1 to incorporate the velocity subtraction method of
preventing integral action wind-up. Assume that a logic signal is available to indicate
when the control actuator is in saturation.

{(a) Draw a flowchart to show how bumpless transfer (Method 2 — tracking of the
manipulated variable) can be incorporated into the standard PID controller.
{b) Based on the flowchart write a program (in any language) for the system.

Write a program, in any language, to implement the velocity algorithm for the PID
controller.

How would you incorporate (a) into the standard PID digital controlier and (b) into
the velocity form of the PID controller, the reguirement that the manipulated variable
should not change by more than 1% between two sample intervals?

Discuss the problems of testing the computer implementation. of a digital control
algorithm. Work out a test scheme which would minimise the amount of time
required for test purposes on the actual plant. The scheme should show the various
stages of testing and should be designed to eliminate coding errors and logic design
errors prior to the connection of the controller to the plant.

The results of an open-loop response to a unit step input for a plant are:

Time (seconds) QOutput
0.1 0.01
0.2 0.02
0.3 0.06
0.4 0.14
0.5 0.24
0.6 0.34
0.7 0.44
0.8 0.54
0.9 0.64
1.0 0.71
1.1 0.76
1.2 0.19

1.3 0.80
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4.9

4.10

DDC Algorithms and Their Implementation

Find (a) the approximate plant model, {b) a suitable sampling interval for a digital
PID controller and {c) estimates of the optimum controller settings for PI and PID
control.

The analog system shown in Figure 4.14 can be discretised using the z-transform plus
zero-otder hold method. The resulting algorithm is

e(n)=r—rc(n
c{n)=(kfa*)[Ae(n — 1) + Be(n — 2)] + [Ccln — 1) - De(n — 2)]

where
A=Tia—-1+exp(—aT)
B=1—exp(—aTl;) - Faexp(-aT;)
C=1+exp(~aTy)
D=exp(-aTs)

T, = sampling interval

Write a program which will enable you to calculate the change in output of the
system, c(n), with time. It is suggested that 50 values are calculated. The program
should enable different values of &, a, T, and r to be entered.

R(s5) C(s)

+ k
s{(s+a)

Figure 4.14 Control system for Exercise 4.9.

Using the program of Exercise 4.9, set k =2, a = 1, r=1 and investigate the response
of the system for different values of T,. It is suggested that 7. = 0.02, 0.05, 0.1, 0.2,
0.5. Compare the results (for example, in terms of maximum overshoot) with the
exact solution for the continuous system (maxmum overshoot = 30.5%).



